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Foreword 

 

The thesis deeply analyzes the existing approaches to price CDOs concerning the 

modeling of the individual default probability, the loss given default and particularly 

the default correlation between obligors. The most common approaches to recover 

the default correlation are represented by the reduced approach, where the 

dependencies of obligors are written in term of default intensities, and the 

structured approach based on the seminal paper by Merton (1974). Here the 

default correlations are expressed through the dependencies of the assets into the 

firm's portfolio on some common factors which allow to consider the granularity 

and the sectorial concentration and contagion risk. Obviously as the number of 

common factors increases, the valuation becomes more precise but the 

complexity of the model considerably increases. For this reason the reference 

paper of this thesis is Castagna et al. (2012) where, in a structured multi-factor 

model, they provide a closed-form for pricing CDO based on a Moment Matching 

technique. 

However the original work of Castagna et al (2012) models the default correlation 

through a multivariate Gaussian copula function which does not allow to consider 

more general asymmetric dependency structures with tail dependencies; then the 

model has been rewritten here in an Archimedean framework such to propose a 

more general representation of the dependencies. Moreover the contribution of 

this thesis is not only theoretical because here for the first time the Moment 

Matching technique has been implemented to price a CDO. The data refer to a 

CDX composed by 125 names whose CDSs' quotes were collected on July 3rd 

2007. As the default probabilities have been bootstrapped from the CDSs' prices 

with maturity 10 years, based on these marginal probabilities, a clustering 

approach allows to reduce the complexity in the numerical computation of the 

moments of the original distribution of the portfolio loss. The idea of the Moment 

Matching technique is to calibrate the moments of the original distribution on the 

moments of an approximated one, assumed to be the well known Vasicek's 

limiting model here, such to recover the parameters of the approximated 

distributions and then the tranches' price. It's very interesting to point out that the 

moment expansion that is very useful for pricing purposes, allows also to identify 
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the potential risk sources entering in the pricing process and to construct an 

hedging portfolio to cover them. 

 

Bologna, October 17, 2013 

 

Prof. Silvia Romagnoli 
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Abstract 

The thesis focuses on a method to price CDO tranches. The original method is 

developed by Castagna et al. in 2012.  

The thesis numerically implements the methodology to price a CDX.  In addition 

the original model is then extended in terms of Clayton copula function. In 

particular, an extension of the model in terms of Clayton copula is provided by 

proposition 6.1, 6.2 and 6.3. The moment expansion, presented in the original 

model, is here used as method to highlight and manage sources of risk.  

Finally, the Clayton extension will be implemented to the same set of data and the 

different tranche prices obtained will be compared. It follows that the different 

characteristics of the two copula function are evident only in the senior and super 

senior tranche. 
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1 Introduction     

1.1 Selection and relevance topics 

The financial crisis which started in 2007 has shown a comprehensive 

undervaluation by the Financial Institutions, of the risk involved in credit 

derivatives, such as collateralized debt obligations (CDOs). 

The complexity of CDOs, combined with inadequate tools for modeling the risk, 

solicited the formation of a more robust approach to measure and price them. 

In  pricing CDOs, the main problem is represented by the fair evaluation of the 

tranches premium. Similarly any other instrument, pricing the tranches premium, 

means fairly compensating the investor for the eventual expected losses. The 

latter  is strictly linked to the individual default probability (PD), the loss given 

default (LGD) and default correlation between obligors of the reference portfolio. 

Modeling the latter represents the main focus in pricing CDOs and it is performed 

following two main approaches: the reduced and the structured approach. 

The first relies on market price of defaultable firms and the default correlation is 

obtained building the dependencies of obligors in terms of default intensities. The 

second, following the work of Merton (1974), takes in consideration the main firms 

fundamentals (equity and debt), and the default correlation is expressed through 

the exposure of the firm assets dynamics on one or more common factors. The 

latter approach is also the one adopted by Basel II aiming to compute the Credit 

VaR. In particular, this approach is called the Asymptotic Single Risk Factor 

(ASRF) and it is based on the work of Vasicek (1991). The ASRF does not take 

into consideration the sector and contagion effect, aiming to give an easy and fast 

implementation methodology to compute VaR..  

In this framework the recent literature extended the ASRF model, by introducing 

such risk sources. Bonollo et al. (2009) extended the basic ASRF hypothesis by 

considering granularity risk, a sectorial concentration and a contagion risk. This 

work has been generalized by Castagna et al. (2009) to a multi-scenario setting. 

Both works derive analytical approximations working very efficiently for the 

computation of the Credit VaR, which is computed at a high level of confidence. 

However, this efficiency is lost working at lower level of confidence, as the ones 

required in the pricing of a CDO. 

E. Marcantoni, Collateralized Debt Obligations, BestMasters,
DOI 10.1007/978-3-658-04846-4_1, © Springer Fachmedien Wiesbaden 2014
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In this framework, Castagna et al. (2012) starting from their work of 2009, 

developed a specific method, based on a Moment Matching techniques, for pricing 

CDO. 

The importance of the model relies at the same time on two aspects. Firstly, 

sharing the same framework of the previous work of 2009, the model is consistent 

with the Credit VaR computation. This enables financial institutions to have a 

unified approach to both evaluate the Credit VaR and the risk of structured 

products they issue. Secondly, the model is based on a more realistic hypothesis 

in contrast to the ASRF, but at the same time provides a closed-form which makes 

the implementation easy and quick, opposed to the more complex methods. 

In the thesis the work of Castagna et al. (2012) is for the first time implemented in 

the pricing of a CDO. Furthermore, in the thesis an extension of the model is 

provided. In the extension, the original model has been rewritten in terms of 

Archimedean copula. This extension has been implemented as well, and the 

results have then been compared. 

 

1.2 Formulating the research questions 

The thesis focuses on the presentation, implementation and extensions of the 

work of A.Castagna, F.Mercurio, P.Mosconi, "Analytical Pricing CDOs in a Multi-

factor Setting by a Moment Matching Approach". Four research questions 

represent the focus of the thesis. 

The original work of Castagna et al. has not been applied to the real data and it is 

here implemented for the first time. This leads to the first research question. Is it 

possible to obtain the tranches prices of a CDO by implementing the model? 

The second research question is strictly linked to the moment expansions used in 

the model. Is it possible to determine potential risk sources and implement the 

method to cover them? 

The third and the fourth research questions refer to possible extensions of the 

model. In the original models, the default correlation is modeled through 

multivariate Gaussian copula. The third research question follows. Is it possible to 

generalize the default correlation in terms of any copula functions and in particular 

is it possible to rewrite the model in a Archimedean framework using the Clayton 

copula? 
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The fourth, and last research question, consequently follows. Is it possible to 

implement the Archimedean model and what are the differences in term of 

tranches price obtained? 

 

1.3 State of the literature 

The default correlation and its modeling through the use of copula function has 

received notable interest during the last decades both by the industry side, given 

the misjudging of risk highlighted by the financial crisis, as well by the academia 

side, given the open issue these still represent. 

As already reported the default correlation is modeled by two main approaches: 

the reduced and the structured approach. The latter is mainly due by Merton 

(1974). This model represents the starting point of all the subsequent literature, 

focusing on the default correlation. In particular, the default correlation is 

expressed as the exposure of asset dynamics on one or more common factors. 

This approach is also the same applied by the international regulation in Basel II 

for the Credit VaR computation. It relies on the ASRF based on the previous work 

of Vasicek in 1991. The success of this approach is due to its closed-form, which 

makes the implementation quick and fast. However, the model is based on strong 

hypothesis, such the homogeneity, which make the model inconsistent with the 

reality. 

In this context several authors tried to extended the model, contributing to create a 

huge and important literature.  

The  extensions of the model are directed in two directions: one aiming to make 

the general hypothesis of the model stronger by eliminating the homogeneity 

assumption and the other aiming to modify the obligors dependencies, but holding 

the homogeneity assumption. Concerning the first point, Bonollo et al. (2009) and 

Castagna et al. (2009) and (2012), both derived efficient analytical Credit Var 

approximations remote from the homogeneous portfolio assumption.  

Relating to the second point, Schonbucher (2003) extends Vasicek’s work to 

Archimedean copulas. Here, the homogeneity assumption holds, but the obligors 

dependencies is based on Archimedean copulas. 
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1.4 Methodology 

To begin with, the main theory aspect will be presented in the first chapters. In 

particular these represent the necessary requirements for the focus of the thesis.  

Once these notions will be give, the thesis will concentrate in a practical 

implementation aiming to price a CDX. The implementation is based on real data.  

Once the historical data are collected, through Microsoft Excel Spreadsheets 

created by the author, the prices of the CDX tranches are obtained.  

 

1.5 The structure of the thesis 

After this introductory chapter  the structure of the thesis will be as follows. 

In the next chapter the CDO main characteristics will be explained. Once the 

general structure of such contracts will be reported, a description of the main 

subjects involved in such contracts are then presented.  A classification of the 

different kind of CDOs is then reported and in particular, being the application 

based on a CDX, such indices will in detail analyzed. The chapters concludes with 

the general CDO pricing formulas. 

Once given a description of CDO characteristics, the main models based on 

correlated defaults will be presented in chapters 3. This chapter offers a detailed 

overview of the past credit risk modeling literature. It starts from the easiest model, 

such as the Bernoulli Model arriving to the one and multi-common factors models. 

The chapter presents the loss dependence in terms of copula functions. 

Chapter 4 gives the main notions of copula functions. To begin with, the definition 

of copula and the fundamental theorem of Sklar will be given. The presentation of 

main copula families and their main characteristics then follow. The concept of tail 

dependence is then explained. 

After these theory chapters, which represent the necessary notions to understand 

the model framework and its extensions, the main targets of the thesis will be 

reached in the subsequent chapters. 

In chapter 5 the original model of Castagna et al. is presented. In particular, the 

only part reported is the Moment Matching procedure, which is a technique to 

obtain tranches price of a CDO.  
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Once the method has been presented, the contribution of the thesis to existing 

literature will be given in the following chapters. 

Two extensions of the model are derived in chapter 6, Firstly, the model is 

rewritten in terms of Clayton copula. The proposition 6.1 , 6.2 and 6.3, derived in 

the thesis, allows a rewriting of the model in terms of a Clayton dependency.  

Secondly, the moment expansions, derived in the original model, is here used to 

present a method to managing risk sources. 

Once these extensions are derived, the numerical implementation follows in the 

last chapter. Chapter 7 is divided in three section. In the first section, the original 

method of Castagna et al. is implemented. This represents a first contribution to 

the original work, given that such method has not been applied to real data. In the 

second section, the new method derived in the previous chapter, is applied to real 

data as well. In the last section, the results obtained using the two method, and so 

the two dependency structures, are compared. 
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2 CDO: general characteristics     

2.1 Introduction and definition   

Securitization has started to play a huge role in the market of the structured 

products since the beginning of the 1990s, reaching significant levels in the last 

decade. The terms "securitization" refers to the transfer of an asset pool into 

tradable securities. 

In the securitization environment, CDOs, as their market volume demonstrate,  

represent one of the most popular instruments.  

CDOs are a class of asset backed securities (ABS) which are securities backed by 

a pool of assets. Once the basket of assets is securitized it is available to be 

traded and the aim of a CDO is to allow the buy side to reach risk-return profile, 

otherwise not available under regulation, and the sell side to discard their risk 

exposures1. 

In a CDO deal, assets exposed to credit risk exposure are pooled and sold to a 

juridical subject called the special purpose vehicle (SPV). The SPV  invests in the 

diversified pool of assets financing the purchase via the issue of financial 

instruments called notes, which are sold to the market in different tranches. 

Tranches are classified according to their grade of seniority and to their different 

risk-return trade off. The seniority refers to the priority in both repayment of the 

principal and payment of the interest. Usually, the "senior tranche" has a rating 

between AAA and A and it is the one with the highest priority. The "mezzanina 

tranche", with a rating between BBB and B and the "equity tranche", follows. The 

latter, sometimes also called equity piece, is the one with the highest risk profile, 

being the first tranche absorbing all the possible losses, and for this reason is 

usually unrated. According to this procedure the losses on the asset side are 

transformed in losses on the tranches, and the tranches holders entirely absorb 

them. This process is also called "waterfall". 

 

2.2 The tranches role 

CDO is an operation of structured finance which recurs on the tranches use. 

Suppose the sell side holds a portfolio, constituted by a set of defaultable 

                                                           
1
 Cherubini et al. (2007) p. 203. 

E. Marcantoni, Collateralized Debt Obligations, BestMasters,
DOI 10.1007/978-3-658-04846-4_2, © Springer Fachmedien Wiesbaden 2014
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instruments of different firms and its aim is discarding the risk exposure coming 

from that pool. The sell side, assuming it cannot sell the entire portfolio, could cut 

off the risk exposure. One way is represented by buying  a credit default swaps 

(CDS) on each name the instruments refers to. Another possibility, the one this 

work is based on, is represented by a CDO. That is,  tranching the portfolio and 

selling the credit risk incorporated in the tranches. 

Tranches are the main characteristic on which structured finance operations are 

based. Each tranches is characterized by a lower limit called attachment point     

and an upper limit called detachment point    . These express the percentage of 

the total portfolio loss covered by the tranches. Usually the equity tranche is 

characterized by     and    . The detachment point for each tranche overlaps 

with the attachment point of the subsequent, in terms of seniority degree, tranche. 

An holders of a tranche with attachment points       is responsible for the asset 

pool losses exceeding   up to  . In this way the holder of that tranche will not 

suffer any loss when the total portfolio losses are lower than   and he will not be 

liable for the part of losses greater than  . 

The tranches holders, bearing the credit risk included on the backed asset, have to 

be compensated via a periodic premium along the life of the CDO. Obviously, the 

lower the tranche seniority degree, the higher the tranche premium. That is, the 

highest premium is due to the equity tranche, which in several CDO contracts also 

receive a further initial upfront.   

 

2.3 Classification of CDOs 

Given the continuous products innovation and the slight differences existing 

between them, it is common to classify a CDO according to: 

- the main aim of the operation in terms of the economic purpose the CDO 

would like to reach. It is possible to distinguish between balance sheet 

CDO, where the originator want to transfer credit risk, and arbitrage CDO, 

issued to profit from the difference between the market prices of the asset 

pool and the price of the securitized products.  

- the management of the collateral as a way to manage notes 'cash flow and 

interests. It is possible to distinguish between cash flow CDO and market 

value CDO. 
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- the structure of the operation. It is possible to distinguish between cash 

CDO and synthetic CDO. 

Finally it is also possible classify the CDOs according to the main characteristics of 

the asset constituting the pool. According to this criteria it is possible to distinguish 

between: 

- collateralized bonds obligations (CBO), where the collateral pool are 

represented by credit risky bonds issued by both public or private firms. The 

main aim of CBO has to be found in arbitrage spread opportunities; 

- collateralized loan obligation (CLO), where the collateral pool is represented 

by banks loans. Banks are mainly motivated by regulatory arbitrage 

altogether with economic risk transfer motivations. 

 

2.4 Reasons for the utilization of CDOs 

In the research of the reasons for the utilization of securitized products is 

fundamental to distinguish between the reasons of the financial institutions and the 

reasons of the general investors. 

The most important reasons driving the financial institution to use securitized 

products have to be found in the risk management and in the diversification. 

Supposing a bank's loan portfolio has a notable concentration in a certain industry 

or region, then the bank could reduce such concentration by securitizing part of 

the portfolio or by investing in securitized products concentrated on opposite 

region or industry. 

Another important reason for the financial institutions lies in the regulatory capital 

relief.  

In particular, taking their commercial loans as asset to securitize the main bank's 

aim is shrinking the balance sheet or reducing the capital requirements.  

According to Basel II model, the regulatory capital requirement a bank has to 

dispose is 8% of the Risk Weight Assets (RWA) of the reference. After the 

tranching of  the pool of loans, the new bank regulatory requirement is providing 

the capital corresponding to the piece retained. That is, passing the 8% of the 

RWA to the amount of equity piece retained.  
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However, whilst by one side this allows banks to benefit in terms of liquidity and 

risk transfer, by the other, there are implied huge costs of securitization that have 

to be take into consideration in the final decision 

However, from a financial institution’s point of view, securitization presents also 

drawbacks. To begin with, the benefit coming from regulatory capital relief might 

be limited by the holding of a large part of the equity tranches, which implies an 

incomplete transfer of credit risk exposure. Furthermore, securitization might be 

expensive considering legal costs, technical costs and rating agencies costs. 

From a general investor point of view, securitization allow investor to reach risk-

return adapt to his profile. For example, CDO tranches with the same ratings of 

other credit derivatives or bonds, have higher return. Furthermore, the credit risk 

exposure of structured products allow investor to achieve a credit risk exposure 

otherwise unreachable in the market. For this reason, some investors as 

institutional investor are not allowed to invest in such typologies of products.   

 

2.5 Typical cash flow CDO structure 

In this section, a typical cash flow CDO is explained, as illustrated in Figure 1. 

Although several classifications have been reported, only the cash and synthetic 

CDO are analyzed in detail below. 

At the origin of a CDO operation there is a pool of asset, which could be remotely 

as well as only recently purchased by the bank, just to be inserted in the CDO 

pool. The originator is usually the holder of the assets, which  sells it to the SPV. 

The latter, as the name suggests, is a company  set-up especially for the notes 

issue and the assets purchasing. The main characteristic of the SPV is the 

bankruptcy remoteness, reached via a strict legal separation between SPV and 

the originator, aiming to avoid a default of the SPV on its obligations due to 

bankruptcy of the originator.   

The SPV, being a company expressly set-up, has no money for funding the 

purchasing of the assets, which will be purchased once the vehicle issued notes. 

That is, the total notional of the issued securities cover the principal of the pool. 

The interest and the principal due to notes investor will be covered with the 

interest and principal of the assets of the pool. Given that the investor is subject to 

the asset cash flow, investor purchasing notes absorb the risk of the pool. For this 
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reason tranching notes in different classes, according to different risk profile, is 

comprehensible.  

 

Figure 1: Typical cash flow CDO structure 
2
 

 

Alongside these two main figures, other subjects play important roles.  

The sponsor is a subject interested in the realization of the operation. Usually the 

sponsor is the subject underwriting the equity piece. In balance sheet CDO the 

sponsor is always a bank aiming for asset restructuring while in the arbitrage CDO 

the sponsor could be either a bank or an intermediary, whose aim is earning by 

the commission fee. 

The arranger, usually an investment bank, is the subject responsible for the 

tranches placement to investors. Its earning is represented by commission fee. 

The asset manager  is the subject responsible for collateral managing. In arbitrage 

CDO, in contrast of balance sheet CDO, this role is certainly more important, given 

that the collateral can be actively managed.  

The trustee is the subject responsible to collect, on behalf of SPV, the cash flow of 

the collateral in order to pay the notes' interest and commission fees. 

 

                                                           
2
 Bluhm, Overbeck and Wagner (2003) p.287. 
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2.6 Synthetic CDO 

Synthetic CDO appeared in the market at the end of the 1990s and, in the last 

years, they have become very popular.  

Differently from the cash CDO, where the assets of reference portfolio are sold to 

the SPV which purchase the ownership rights, in the synthetic CDO only the credit 

risk is transferred.  

The reduction of legal issues, and their associated costs, altogether with the 

flexibility of the structure for arbitrage and hedging aims, made synthetic CDO very 

requested instruments. 

Synthetic CDO, according to the funding methodology used, can be divided into 

fully funded synthetic CDO, unfunded synthetic CDO and partially funded synthetic 

CDO.  

In a fully funded synthetic CDO, as in Figure 2, the originator, that is the protection 

buyer transfers to the SPV, that is the protection seller, the credit risk of a 

reference portfolio through a CDS. As a CDS contract implies, the SPV receives 

from the originator a premium for the protection he has to pay if credit event 

occurs. The protection seller issues notes for a value par to the reference portfolio,  

tranching them in different risk classes. Investors, once notes are underwritten,  

themselves become protection sellers.  The amount collected by the issuing is 

then invested in a risk free collateral, whose interest is usually modified via a swap 

contract. The protection seller uses the interest generated by the default free 

collateral, together with the premium received by the protection buyer, both to 

respect the notes' holders rights and to ensure to the originator the protection 

agreed.  

Differently from a fully funded synthetic CDO, in a unfunded synthetic CDO the 

originator transfers the reference portfolio stipulating more CDSs with the SPV. 

The CDSs differ for the risk they reflect. Furthermore, in this deal the investors are 

not supposed to response to any initial investments, so no notes are issued and 

consequently no risk free collateral is present. 
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Figure 2:  Fully funded synthetic CDO 
3
 

 

A partially funded synthetic CDO is the most common structure of a synthetic 

CDO, which mix characteristics of a totally funded CDO and unfunded CDO. In 

this contract, as represented in Figure 3, the credit risk is transferred using both 

CDS and Credit Linked Notes (CLN). Usually the originator transfers the credit to 

two counterparties. 

A first counterparty (protection seller) sells protection to the originator for a super 

senior and a junior tranches of the reference portfolio, through two different CDS. 

These two pieces constitutes the unfunded part. 

A second counterparty, usually  a SPV, sells protection to the originator for the 

remaining volume of the reference portfolio. As in a fully funded CDO, the SPV 

has to invest in a risk free collateral, to guarantee the payments due to the 

originator. If a credit event in the reference portfolio occurs, the SPV can cover the 

losses selling a part of its collateral securities. The collateral securities are bought, 

with the money which SPV collected issuing CLN. The notes linked to the 

reference portfolio, are divided in tranches reflecting different classes of risk and 

their interest are paid back with the spreads  that the originator, as protection 

buyer, owes to the SPV. 

In the occurrence of a credit event, the junior CDS counterparty is the first to cover 

the losses.  

                                                           
3
 Bluhm, Overbeck and Wagner (2003). 
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When the cumulated losses of the reference portfolio exceed the upper limit of the 

junior piece, the notes' investors have to cover the losses according to the 

tranches seniority. Finally, when losses exceed the upper limit of the super senior 

tranches, the super senior CDS counterparty has to pay too. 

 

Figure 3: Partially funded synthetic CDO 
4
 

 

2.7 Credit default swap index  

2.7.1   Definition  

Credit default swap index are tradable products that allow investors to sell or buy 

protection on specific credit markets, through establishment of long or short 

position on the index.  

These indices are standardized and global products. The most important are: CDX 

indices in North America and Emerging Markets, and the iTraxx indices for Europe 

and Asia. A more clear overview of the global indices follows in Figure 4.  

As well as an index, CDS indices reflect the performance of a basket of assets, 

which are in this case single CDSs. CDX and iTraxx are both characterized by a 

basket of 125 individual CDS with equal weights inside the portfolio. When a credit 

event occurs, the name is immediately removed from the reference portfolio.  

                                                           
4
 Bluhm, Overbeck and Wagner (2003) p. 299. 
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Figure 4: Overview of global CDS indices 
5
 

 

Each CDX index acts as standard CDS with a fixed portfolio of credits and a fixed 

annual coupon, divided into quarterly payments. 

These indices, such as each instruments traded in the market,  have a price called 

the market spread, which is determined by supply and demand. For this reason, 

the difference between the fixed coupon and the current price, has to be offset via 

an upfront. 

In particular, if the fixed coupon is greater than the market spread, then the 

protection seller (long position) has to compensate an upfront to the protection 

buyer (short position).  

 

2.7.2 Synthetic CDS index tranches 

A tranche allows division of the total risk of a reference portfolio into several 

classes,  characterized by different risk-return profiles. The greater the risk an 

investor decides to bear, the greater its return compensation.  

As a CDS provides credit risk protection on an individual name and as CDS index, 

provides credit risk protection on a reference portfolio of several individual CDSs, 

a tranche CDS index provides credit risk protection on a particular amount of loss, 

of a reference portfolio constituted by several individual CDSs. 

                                                           
5
 Merrill  Lynch (2006) p. 73. 
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A tranches is used to agree the specific pieces of the total losses, on which the 

protection is bought or sold. As in a CDS contract, the cost of the tranche 

protection is paid as coupon.  

Standard tranches are traded on the North America CDS indices, CDX, and on the 

European CDS indices, iTraxx.  Figure 5 shows the tranches available. 

Each traded tranched index differs according to its main characteristics. 

For example, referring to the North America CDS indices market, CDX Investment 

Grade (CDX.IG) are divided into 0-3%, 3-7%, 7-10%, 10-15%, 15-30% and 30-

100% tranches where the 0-3% class is called the equity tranches. Instead in the 

CDX High Yeld (CDX.HY) the tranches are the 0-10%, 10-15%, 15-25%, 25-35%, 

35-100% , where the 0-10% and 10-15% represent the equity. Another difference 

between these two index lies in the way equity is traded. In CDX.IG the equity 

premium is the sum of an upfront and a 500 basis point (bp) spread, while in 

CDX.HY equity premium is only the upfront. The equity tranche trades at the 500 

bp in both indices. 

In the European landscape the iTraxx, except for the tranches width, is similar to 

the CDX. The tranches are into 0-3%, 3-6%, 6-9%, 9-12%, 12-22% and 22-100% 

where the 0-3% is the equity tranche.  

Figure 5: Summary of the available tranches index 6 

 

2.7.3 Synthetic tranches target 

The synthetics tranches are instruments which allow investors to receive default 

protection, leverage exposure, hedging and trading opportunities. 

                                                           
6
 Source: JPMorgan (2006) p. 138. 
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When an investor decides to buy protection on a specific tranche, the protection is 

ensured only for the amount of losses which fall into that specific tranches. 

That is, buying protection on an equity tranche ensures receiving money up to the 

attachment point. For this reason, buying protection through an equity tranche is 

cheaper than being long on CDS indices.  

Tranches provide two kind of leverage exposure: one referred to the risk of 

portfolio losses and one referred to moves in the spread of the underlying portfolio. 

The leverage exposure to the risk of portfolio losses can be explained as follows. 

The  protection seller of the CDX.IG equity tranche and the protection seller of the 

CDX.IG index will receive the same annual amounts, equal to 500 bp, in case of 

no default. In case of one credit event the protection seller of the equity tranche 

will lose 16% of the notional, while the protection seller of the CDX.IG index will 

lose only 0.48%.7 

The leverage exposure to spread moves, refers to the fact that synthetic CDO, 

being traded quickly and in relation of huge amounts, influence CDS spreads. The 

sensitivity of the tranche to the spreads is called "Delta" and is quoted too.  

The equity tranches is the one with the highest sensitivity, i.e. the highest Delta. 

Being the first losses covering to the equity tranches,  the spread paid/received by 

the protection buyer/seller will be the highest.  The higher the seniority of the 

tranche, the lower the referred spread. This is why the delta decrease as the 

seniority  increases.   

The synthetic tranches became popular also for their use as hedge tool, against 

portfolio losses and spread moves in the underlying portfolio. 

Investor wanting to hedge the credit risk of a portfolio of CDS can use synthetic 

tranches, which represent an alternative cheaper way to the CDS indices.  

 

2.8 CDO Pricing: a general approach  

2.8.1  Loss Distribution 

Consider a static CDO whose reference portfolio is constituted by credit default 

swaps. The CDO investors are the protection sellers, which offer protection when 

                                                           
7
 Assuming a 60% loss on a credit , equal to assume a loss of 0.48% on 125 names portfolio 

(1/125x60%=0.48%). The protection seller of equity will pay 16% (0.48%/3%=16%) of the notional. 



18 
 

a credit event occurs, in return of a premium. A tranche is characterized by  lower 

and upper bounds, called respectively   and  . Each tranche absorbs exclusively 

part of the cumulative loss percentage which falls between the attachment and the 

detachment point.  

Let      be the cumulative loss on the reference portfolio and      the cumulative 

loss on a given tranche, then:                   

                                                                                                    

                                              

                                                                                               

Determining the value of the cumulative loss is fundamental to determine the 

payment that is due to the protection buyer by the protection seller. That is 

fundamental to determine the cash flow between these two counterparties and 

finally the CDO tranche price. 

Consider a reference portfolio with   obligors having a notional amount     and a 

recovery rate   , with          . Define the loss given default of the    -obligor 

as            . Let    denotes the time default of the    -obligor and       

       . Now we are able to express the cumulative loss of the reference portfolio 

at time   as: 

     ∑   

 

   

      

 

 
      

which is a jump process, where to each jump of      corresponds a  cash flow 

transfer from the investor, that is the protection seller, to the originator, that is the 

protection buyer. 

Assuming each obligor has the same notional amount and the same recovery rate, 

we can write the expected percentage loss of a given tranche. 

In a discrete time setting we have: 

            
        

   
                                                        

                        
 

   
∑                       
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In a continuous setting, assuming to know,   , the probability density of the 

distribution  , we can write the expected loss of a CDO tranche       as: 

 

            
 

   
∫                             

      

 

The expected tranche loss can be written as8: 

            
 

   
(∫     

 

 

       ∫     

 

 

      )   

 

 
 

      

In order to determine the tranches' premiums, which should reflect the expected 

loss of each class, the distribution losses of the portfolio       is required. 

However, this is where the most of the difficulties lie in.  

The loss distribution of a portfolio constituted by a set of defaultable instruments 

depends on the probability of default of each asset, the effective loss in case of 

default, i.e. loss given default (LGD) and the effective impact a default of a firm 

causes on another firm. The latter issue, named default correlation, plays an 

important role on the determination of the loss distribution. 

The literature about the CDO pricing model is based on two main approaches 

called respectively structural models and reduced form models.  

Structural models use the firm's fundamental financial variables, such as asset and 

liabilities to determine the default time. In particular, following the first structural 

model by Merton (1974), the default happens when equity is below the debt. 

Conversely, reduced form models do not consider the link between the default and 

the economic situation described by the balance sheet. These models use market 

data as the only source of information, from which easily both default probability 

and credit risk dependencies are bootstrapped. Obviously these are easier to 

calibrate, but they suffer the lack of a real linking between the default probability 

and the fundamental variables. 

In the next chapter several models aiming to obtain the loss distribution are 

reported. 

                                                           
8
 For a proof see  Anna Schlosser (2010) p. 98. 
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2.8.2 Spread 

The fair premium due to the protection seller by the protection buyer, can be 

determined using the same idea at the basis of a CDS contract, i.e. setting the fair 

premium   such that the present value of the default leg is equal to the present 

value of the premium leg. The default leg (DL) is the sum of all the expected 

losses of a tranche and the premium leg (PL) is the sum of the expected premia 

the protection seller receives. Assuming a constant annual spread for a given 

tranche we can write the two present value legs as follow: 

   ∑(                         )         

 

   

 

 

 
      

   ∑         

 

   

(             )          

 

 
      

where         is the discounting factor for each maturity    and   is the number of 

maturities. 

The fair spread is obtained setting a premium   by equaling the present values of 

the two legs. That is: 

    
∑ (                         )         

 
   

∑        (             )
 
           

 

 

 
 

      

Being   constant by the previous assumption and    fixed in advance, the only 

unknown variable is the expected loss of the tranches. In order to compute it we 

have to model a default process for each obligor, taking into account the default 

correlation.  
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3 Credit Risk Modeling 

This chapter will present an overview of the credit risk modeling literature. It will  

present the general setup which the most common models share and the 

derivation of the models themselves. This overview contains the models, which will 

be in the centre of the empirical part of the next chapters. 

 

3.1 The  Bernoulli Model 

Assume the existence of a portfolio constituted by   counterparty and denote     

the loss of the     - obligor, with        . 

Let            )  be a vector of random variables,  whose marginal distributions 

           are Bernoulli. A two-state of world is assumed, where the obligors 

default with probability   , when     , and survive with probability     , when 

    . That is: 

                              {
                  

            
 

where            is the probability  of default. 

Being the portfolio a set of   credit-risky assets, the portfolio loss is then a random 

variable  , defined as 

  ∑  

 

   

   

The simplest situation corresponds to assume uniform default probability and lack 

of dependence between obligors.  According to these assumptions, it is possible to 

write: 

 

                                                  

 

Assuming a uniform default probability and the lack of default correlation, the 

portfolio loss   ∑   
 
    corresponds to a convolution of        Bernoulli variables 

that follow a binomial distribution         .  

According to the Binomial distribution properties the first and second moments are 

 

E. Marcantoni, Collateralized Debt Obligations, BestMasters,
DOI 10.1007/978-3-658-04846-4_3, © Springer Fachmedien Wiesbaden 2014
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Assuming obligors be still independent, but with different default probabilities lead 

to:  

                                                   

As before the portfolio loss is again a convolution but the first and second 

moments are now: 

     ∑  

 

   

                                ∑  

 

   

        

The assumption of independence simplifies the situation because it allows the use 

of the central limit theorem, thanks to which we could approximate the loss 

distribution as a Gaussian variable, at least for large portfolio. 

The assumption of independence  obviously simplifies the model, given the 

opportunity to recur to a close formula, due to use a Gaussian variable, instead of 

recur to a simulation via Monte Carlo. 

The independence assumption in credit risk are useful as well they are so far away 

from the reality. For this reason modeling credit risk has to take in consideration 

the modeling of the correlation issue. This challenge is presented in the following 

models. 

 

3.2 A Bernoulli mixture Model 

3.2.1 The general case 

Assuming independency in credit risk model and leaving out correlation issue is 

not realistic.  

In the Bernoulli Mixture Model the loss of a portfolio has marginal losses again 

distributed with a Bernoulli distribution, that is           .  

The difference is that now, the default probability are randomized in a correlated 

way.              is the random vector distributed following a distribution   

supported in       , with realization vector            . 

Furthermore, it is assumed that conditionally to a realization of the default 

probability the Bernoulli variables    are independent. Mathematically speaking: 
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  |                         |                  

The unconditional joint distribution of the    is: 

 

                 ∫ ∏  
  

 

   

      
    

       
            

 
      

 

Each single loss is characterized by the following first and second moments:  

 

                                                               

 

The covariance between two losses       is: 

 

                                         

 

(3.3) 

 

and the correlation between default is: 

 

            
          

√     [       ]√ [  ] [   [  ]]

   

 

 

(3.4) 

 

3.2.2 Uniform default probability and uniform correlation case 

A common simplification of the Mixture Model is to consider uniform default 

probability and uniform correlation. This is usually assumed for portfolios 

characterized by the same exposure, both in risk and size term. Assuming 

uniformity imply exchangeability9 of the Bernoulli variables          , where the 

random default probability is again distributed following the distribution   

supported in       . Once assuming, as in the general case, conditional 

independence of the   , it is possible determine the joint distribution as: 

 
                                                           
9
 A random vector is said to be exchangeable if its joint distribution is symmetric under any permutation of 

the random vector; i.e.                       where            is one of its possible permutation. 
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                 ∫           
 

  

      
 

      

 

                     ∑  

 

   

                              

The probability of having exactly   default is: 

            

       (
 

 
)∫           

 

  

      
      

 

3.3 Moody's KMV's and RiskMetrics' Model Approach 

The model presented in this section belong to the family of threshold models, 

based on the idea that the default occurs when a relevant random variable lies 

below some critical barrier. According to the model the relevant random variable 

varies. The main idea is that in a given point of time, a firm defaults if its  asset 

value is smaller than a certain threshold. Consider, as usual the existence of   

counterparties, each of them characterized, at time  , by an asset value     
 . 

Each company is supposed have a critical threshold   , such that the firms default 

in the period ⌈   ⌉ if and only if at the end of this period, so when    ,     
    . 

Applying to this specific environment the previous Bernoulli Mixture Model, we can 

define each loss statistic as a Bernoulli distribution with parameter 1 and       
  

   , that is: 

 

         
     

    (   [    
    ])                 

 

    
   is the only random variable which determines the default event and in both 

models, it is assumed to be a process driven by underlying factors reflecting 

country and sector events. The main idea is modeling the default dependence 

between obligors via correlation between returns. One way is represented by 

building a correlation matrix using historical returns. However it is not the most 

practical way, especially in large portfolio case. Another one is to write the returns 
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as a sum of common factors and a firm specific factor, and to express the 

dependence according to different exposures to same common factor.   

According to the Merton's model, the Global Correlation Model™ defines the asset 

log-return    
    

 

    
 
  represented as follows: 

 

                                  

This model gives the possibility to model default correlation in a more direct way. 

In fact here it is assumed that the asset log return is a sum of two parts. The    

common to all the asset return, called composite factor, and the other one   , that 

is the specific part, called idiosyncratic effects. The composite factor is the sum of 

country and factor indices.  

 The coefficient    determines how the    - firm is influenced by the common factor 

and comparing these coefficient it is possible to obtain an idea of how different 

asset are correlated. 

The idiosyncratic effects of each firm are assumed be independent between them 

and independent of the composite factors.   

Both model assume that the asset value log-returns are normally distributed, that 

is: 

                                                                           
   

Given that the driving variable     
  is replaced by the asset log-return   , the 

threshold    is replaced by the corresponding   . Therefore the loss statistic can 

rewritten as:  

 

           
                                    

 

By (3.5) it is possible rewrite the default condition as: 

 

                            

Let               be the default probability of the    - obligor, being          , it 

is immediately possible to obtain: 
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Once divided the idiosyncratic term by its variance, in order to scale it, and  

substituting the threshold with the (3.11), it is possible to obtain the normal random 

variable: 

  ̃  
            

√    
 

    
 

       

 

Given that in both models the horizon is     year, the one year probability of 

default for the    -obligor, conditional on the factor  , is given by: 

 

        

[
 
 
 
            

√    
 

]
 
 
 

 

 

          

 

       

 

The only stochastic term is the composite factor    and conditional on      the 

condional one-year probability of default is given therefore by: 

 

       

[
 
 
 
           

√    
 

]
 
 
 

 

 

          

 

       

 

 

Given the (3.9) we follow the same elaboration of the Bernoulli mixture model 

framework. Assuming again that         , as in (3.1) we specify the joint 

probability: 

                 ∫ ∏  
  

 

   

      
    

       
            

 
       

 

where the distribution   is  now given by: 
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where,         is a cumulative multivariate normal distribution with correlation 

matrix  .                is the asset correlation of the asset log-return. 

Notice that when the composite factors are expressed through a weighted sum of 

country and sector indices            , such that:  

 

   ∑     

 

   

 

 

       

  

then the conditional probability of default is given by: 

 

         

[
 
 
 
                         

√    
 

]
 
 
 

 

 

       

  

3.4 One-Factor Model 

The one-factor model relies on both Moody's KMV and RiskMetrics context. 

However, it differs from them because assume the existence of a one-factor 

common to all obligors, therefore assuming uniform asset correlation. The (3.3) in 

the light of the model specification, is hereby rewritten as: 

 

   √   √                       

where the previous composite factor    is now replaced by a one-factor common to 

all obligors, such that         . Moreover,   is the uniform log-return correlation, 

unique for all obligors, and           is the idiosyncratic term. Again,    is 

assumed be independent of the one-factor  . 

Under new model specification the default probability can be rewritten as: 
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                             [
        √  

√   
]                                       

 
       

 

and the default probability conditional to       is therefore: 

                             [
        √  

√   
]                                       

 
       

 

In  Figure 6 is possible to observe how the conditional default probability change 

at changing in the realizations of the factor. The default probability of default of the 

   - obligors is assumed to be 30 bp and the uniform correlation       . 

 

Figure 6: Asset Value One-Factor Model: Conditional default probability as a function of the factor 

realizations Y=y 
10

 

 

In  Figure 7  it is possible to observe how the conditional default probability as 

function of the default probability. Assuming the uniform correlation      , the 

figure shows three states of the economy. In particular are considered the specific 

case of the factor realizations Y=-3, 0, 3. 

                                                           
10

 Bluhm, Overbeck and Wagner (2003) p. 81. 
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Figure 7: Asset Value One-Factor Model: Conditional default probability as a function of the 

average 1-year default probability    
11

 

 

The probability of having exactly   default is, as before,  an average of the   default 

probabilities, conditional to    , averaged over all the possible Y realizations and 

weighted with the  probability density function     : 

       ∫      |    
 

  

       
 

       

 

where the probability of having exactly    default, conditional to     is given by 

the binomial distribution: 
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Substituting (3.23) and the (3.21) in (3. 22) leads to: 
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11

 Bluhm, Overbeck and Wagner (2003) p. 82. 
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Finally, the distribution function of the default is: 
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3.5 The large portfolio approximation 

When the number of obligors tends to infinity, the distribution for uniform portfolios, 

with uniform default probability   and uniform correlation  ,  tends to a limit 

distribution, as Vasicek (1987) demonstrate. 

A portfolio is said to be a large uniform portfolio, when there is a very large     

number of obligors having uniform exposure amount. 

Once introduced as usual a Bernoulli mixture model, each obligor is described by 

a loss statistic:  

 

           
                                      

 

The term            follows a one-factor process of the kind: 

 

    √   √                       

 

and, being default probability assumed uniform, the threshold is given by 

 

                            

Let be         the default probability conditional on the realizations of the common  

factor, as usual, it is given by:  
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Vasicek proved that in such context the percentage portfolio loss distribution 

  
  

 

 
∑ {         }

 

   

 
 

       

 

admits almost surely a limit for     as follows 

 [    
   

(  
         )   ]    

       

So almost surely, under the previous assumption the percentage portfolio loss 

distribution can be replaced by the default conditional on the realization of the 

common factor. That is, under the Vasicek's limit theorem:  
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Computing the derivative of the distribution function with respect to   it is possible 

to recover the corresponding density function     : 
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The Figure 8 shows how the density         changes, varying the parameters 

  and  . 
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(a):                                                          (b):               

                

     (c):                                                           (d):                  

    

                      (e):                                                                  (f):           

Figure 8: The probability density         for different parameters scenarios   and   
12

 

 

In particular it is possible to notice the four extreme cases admitted by the loss 

density according to the four extreme value taken by the parameters   and  . 

- Absence of correlation case,      

In this situation, the (3.27) is simply       , and the loss variable becomes  

    
(         )

            

                                                           
12

 Bluhm, Overbeck and Wagner (2003) p. 89. 
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In a correlation-free situation the portfolio loss    ∑   
 
    tends to a 

binomial distribution,            . In addition the percentage loss defined 

as      ∑         
 
   , converges to    by the Law of Large Numbers. 

So the density function         is the density of a degenerate function 

concentrate in  . Panel (a) of Figure 8 shows the loss density in a situation 

of almost null correlation       with         . 

- Perfect correlation case,      

Perfect correlation means that default of one obligor imply almost surely 

default of all the other obligors of the portfolio. For this reason the 

percentage portfolio loss is independent on the number of obligors   and 

follows a binomial distribution       , where          and        

   . As illustrated in panel (d) of the Figure 8 it is possible to notice that 

the loss density is concentrated in only two points, meaning that the loss 

portfolio could be total or null. There are no intermediary situation and this 

case is called the "all or nothing" loss case. 

-      

In this situation where the uniform default probability is assumed to be 0, all 

the obligors survive almost surely. That is              .  

-      

In this situation where the uniform default probability is assumed to be 1, all  

the obligors default almost surely. That is              .  

 

3.6 Multifactor models 

The multi-factor model is an extension of the previous sections which consider 

more than a unique driving common factor. Mathematically, we can decompose 

the asset return of the    - obligor as:                           

 

             ̂         

where    is the composite factor of the    - obligor and it is a weighted sum of 

indices: 

   ∑       
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Following the Moody KMV separation approach,    denoting the sector indices or 

the geographic indices are distributed as a standard Gaussian. Furthermore 

 ̂          
   where: 

  
     [  ∑       

 

   

]    
 ∑                   

 

     

 
 

       

       and   ̂  are independent for any  .  

Multiplying the idiosyncratic vector for its standard deviation and considering that  

  
    

  13, we can rewrite the asset return of the    - obligor as: 

 

                                   √    
                                         

 

       

where           and again    and     are independent for any  . 

 

 

 

 

 

  

                                                           
13

 C.Bluhm and L.Overbeck (2007) p. 322. 
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4  Copula functions and dependency concepts 

4.1  Copulas Basics 

Modeling default of several obligors implies modeling the default probability of the 

single obligor as well as  the dependence structure between obligors. 

A general distribution function, in our example a distribution function of a portfolio 

of several obligors, contains information about both marginal obligor distribution 

and their correlation structure. However these two parts are implicit in it.  A copula 

function is a tool, allowing a way of isolating the description of such dependence 

structure. 

Further details on copula function and proofs of theorem can be found in Joe 

(1997), Nelsen (2006) and Cherubini et al. (2004). 

Definition 4.1 (copula)  A I-dimension copula is a distribution function,     

             with uniform marginal distribution satisfying the following 3 

properties:  

                    is increasing in each component   .   

                             for all                         

         (rectangle inequality): for all                              with       we 

have  

∑ ∑  

 

    

 ∑                    

 

    

 

    

             

          where        and        for all        . 

The first property is a necessary requisite for any multivariate distribution functions 

and the second is the equivalent mathematic way to require uniform marginal 

distribution. The third property ensures that  for any random vector            with 

distribution function C,                        is non-negative.  

The following theorem shows the importance of copulas, stating that all 

multivariate distribution functions contain copulas, as well that copulas can be 

used to construct multivariate distribution functions, starting from the marginal 

distributions. 

E. Marcantoni, Collateralized Debt Obligations, BestMasters,
DOI 10.1007/978-3-658-04846-4_4, © Springer Fachmedien Wiesbaden 2014
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Theorem 4.2 (Sklar)    Let         be random variables ,        be their 

marginal distributions and   be the joint distribution. Then there exists a copula 

                such that for               
   

                                    , 

if        are continuous then C is unique; conversely  C is uniquely determined on 

R            , where        is the range of   .Moreover if C is a copula 

and         are univariate distribution functions then   is the joint distribution 

function with margins        . 

This is the fundamental theorem in copula framework, because ensuring that for 

any multivariate distribution, the univariate margins and the dependence structure 

can be separated, and the dependence structure is an implicit characteristic of the 

copula function. 

Some more properties of copula functions follows. 

Propositions 4.3  

        (Invariance to increasing transformations.) Let             be a vector of 

random variables with copula     . Then for any strictly increasing set of 

functions       ,      is again a copula of the so built random vector, 

                        

        Let be                a copula. The copula C is non-decreasing in each 

argument. That is, if           then 

      (      
 )          

               

        (Fréchet bounds.) For every           any I-dimensional copula C satisfies  

the following inequality: 

   {∑  

 

   

       }                         

The Fréchet limits are important since they represent the upper and the lower 

bound to a copula. Moreover, the bounds represent the largest possible positive 

and negative dependence. 

Remark: 

The Fréchet bounds has been expressed in terms of copula but Fréchet bounds 

do exists for any multivariate distribution F(x) with margins          
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   {∑      

 

   

       }                              

 

4.2 Examples of copulas  

Copulas can be divided into three main categories: fundamental, implicit and 

explicit copulas. Fundamental copulas are the ones expressing a particular 

dependence structure, as the product copula.  

Implicit copulas are so called because they are an implicit consequence of the 

Sklar's theorem application to well known multivariate distribution, as the Gaussian 

and t-students multivariate distributions. Implicit copulas are Gaussian copula and 

t-copula. These do not have a simple closed expression.  

Explicit copulas are constructed following mathematical steps and have simple 

closed expression; Archimedean copulas are examples of explicit copulas. 

 

4.2.1 Product copula 

This is the simplest example of a copula and corresponds to the uniform 

distribution on       .  

The product copula, also called the independence copula, is given by: 

              ∏  

 

   

 

As the name suggest it is the copula of independent random variables. From the 

Sklar theorem it is clear that random variables            are independent if and 

only if the I-dimensional copula C these random variables is:  

 (               )   (               ) 

 

4.2.2  Gaussian Copula 

Let              ) be a vector of normally distributed random variables, such 

that          . Let           be the standard normal vector, such that 

       is the correlation matrix of  . Being standardization a transformation of 

strictly increasing function, the copula of   is the same of  . This copula is given 

by: 
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where                 and    refers to the joint distribution function of  . 

The Gaussian copula does not have a closed form but can be expressed as an 

integral over the density of  . Consider the 2-dimenional copula   
          where 

           is the correlation between the two random variable          . Then 

for  | |   : 

  
          ∫ ∫

 

          ⁄

        

  

        

  

   {
    

           
  

       
}         

Product copula can be seen as a particular case of the Gaussian copulas. A 

Gaussian  copula with correlation matrix     , where    is a identity matrix of 

order I.  

Gaussian copula make easy draw random sample from it. The following algorithm 

generates random sample from the Gaussian copula with correlation matrix P: 

1. Generate the vector                 jointly distributed following          . 

2. The  vector                with    =       is distributed according to   
     . 

A further characteristic of the Gaussian copulas is their flexibility,  which allows to 

link random variable with a Gaussian copula, even if the marginal distribution are 

not normally distributed. 

The Figure 9 shows the density of a Gaussian Copula whit correlation         

 

Figure 9: Density of a bivariate Gaussian copula whit correlation          
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4.2.3 t-Copula 

Let              ) be a vector of normally distributed random variables, such 

that          . Let              ) be a vector of   -variables, with   degrees 

of freedom, which are independent of Z.  

Let              ) be a vector of random variables such that  

     (
√ 

√ 
  )  

then the distribution  function     
     is a copula and it is called the t-copula with   

degrees of freedom and correlation matrix  . 

 

Figure 10: Density of a bivariate t-copula with correlation       and     
14

 

 

4.2.4 Archimedean Copulas 

Archimedean copulas are characterized by a very low number of free parameters, 

usually corresponding to one or two.  

Archimedean copulas can be constructed using a function            called 

generator of the copula. The generator should be a continuous, decreasing and 

convex function such that         and       .  

                                                           
14

 Own Source. 
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Pseudo-inverse of   has to be defined too. In particular the pseudo-inverse is the 

function:  

         {
               

           
 

By definition the pseudo-inverse satisfies: 

     (    )                              

Once defined the generator and its pseudo-inverse, it is possible give a definition 

of Archimedean copula function. 

An Archimedean copula function                    is a copula function that can 

be represented as follows: 

           (∑     

 

   

)  

Let Laplace transformation be recalled: 

Definition 4.4 (Laplace transform) The Laplace transform of a non-negative 

random variable  , with distribution function      and density function      (if it 

does exist), is defined as: 

              ∫     

 

 

      ∫     

 

 

                               

The inverse of Laplace transforms is a generator of a Archimedean copula. It is 

easy to generate a multivariate Archimedean copulas according to the previous 

definition, but the limit this lead to, is that the dependence structure is then 

captured by only one or two parameters. So these are not sufficient if the 

dependency structure has to be modeled in more details. 

The most important Archimedean copulas are following reported. For more 

completed list see Nelsen(1999). 

Gumbel Copula 

The Generator is given by              , hence its inverse is          

       
 

  . The Gumbel n-copula is therefore: 

                 { [∑       
 

 

   

]

 
 

}                         
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Clayton Copula 

The Generator is given by      (     ), hence its inverse is          

      
 

 ; The Clayton n-copula is therefore: 

              [∑  
  

 

   

    ]

 
 
 

                

Frank Copula 

The Generator is given by        (
      

     
) hence its inverse is          

 
 

 
        (    )  the Frank n copula  is given by: 

               
 

 
  {  

∏           
   

          
}           

In Table 1 the specifications of the generators of the most common Archimedean 

copulas are reported. In addition the inverse and the Laplace transforms, that is 

the distribution and the density function of the r.v. Y are reported as well. 

 

Name Gumbel Clayton Frank 

    

                        (     ) 
       (

      

     
) 

                         
 

                   
 
            

 

 
        (    ) 

              

      -stable,      ⁄   Gamma(  ⁄   Logarithmic series on   , with 

          

     (no closed form is 

known) 

 

    ⁄  
          ⁄         

  

        

  

 
 

Table 1:  Summary of some generators, their inverse and Laplace transforms for Gumbel, Clayton 

and Frank copulas 
15

 

 

                                                           
15 Marshall and Olkin (1988). 
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4.3 Tail dependence 

Definition A bivariate copula        has a upper tail dependence with parameter 

   if: 

   
   

           

   
       

C has a lower tail dependence with parameter    if: 

   
   

      

 
       

The coefficients of upper and lower tail dependence are measures depending only 

on the copula of a pair of random variables    and    with continuous marginals    

and   . These coefficients express measures of dependence in the tails of a 

bivariate distribution.  

In particular, lower tail dependence means that when     the probability mass 

       tends to zero like    , and not like the area of the square   .  That is, in 

the corner (0,0) of the square             there must be a strong singularity of the 

copula's density. 

Upper tail dependence means the same but in the corner (1,1) of the square 

           .  

Roughly speaking, upper tail dependence means that there is a tendency of    to 

assume extremes values when   assume extremes values as well. Being copula 

functions used to model credit default dependence, tail dependence represent a 

huge problem when the random variable are financial losses. 

By tail dependence definition16 it is possible to obtain the upper and lower tail 

dependence coefficient    and     for the  family of copulas described.  

In particular, by applying the definition, it is possible demonstrating that the 

Gaussian copula has a  tail dependence coefficient     (provided  the correlation 

be     .  That is, the Gaussian copula is asymptotically independent in both tails. 

Regardless of correlation we choose, if we go far enough into the tail, extreme 

events appear to occur independently in each margin. 

Conversely, the t-copula presents tail dependence in both the tails. In panel (a) of 

Figure 11 are represented 2000 samples from a Gaussian copula with correlation 

      and in panel (d) 2000 samples from a t-copula with correlation       and 

                                                           
16

  McNeil, Frey & Embrechts (2006) p. 209. 

file:///C:/Users/Enrico/Downloads/McNeil,%20Frey%20&%20Embrechts%20-%20Quantitative%20Risk%20Management.pdf
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   . It is possible to notice that in the t-copula graph samples cluster more in the 

lower and upper corner than the Gaussian graph. 

The Archimedean copulas present an asymmetric dependence structure. In 

particular the Gumbel copula presents a upper tail dependence but not lower tail 

dependence, while conversely the Clayton copula has a lower dependence but not 

an upper dependence. Panel (b) and (c) of Figure 11 shows respectively 2000 

samples from a Gumbel with parameter     and a Clayton with parameter 

     . 

 

                             (a)                           (b) 

 

                            (c)                            (d) 

Figure 11: Two thousand simulated points from the (a) Gaussian, (b) Gumbel, (c) Clayton and (d) t 

copulas 
17 

 

The Sklar's theorem provide an elegant methodology to construct a multivariate 

distribution, using an arbitrary copula and margins. It provides that using a copula 

  and margins         then it is possible to obtain a multivariate distribution 

function,                            with margins        . 

                                                           
17

 McNeil, Frey & Embrechts (2006) p. 194. 
 

file:///C:/Users/Enrico/Downloads/McNeil,%20Frey%20&%20Embrechts%20-%20Quantitative%20Risk%20Management.pdf
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A  multivariate distribution built, through a copula and arbitrary margins, is called 

meta-distribution. For example, using a Gaussian copula but arbitrary margins, it is 

possible to obtain a meta-Gaussian distribution. McNeil, Frey & Embrechts (2006) 

extend the meta-distribution also to the other copulas family 

Using the two thousand samples illustrates in the Figure 11 and normal margins, it 

is possible to construct four meta distributions. In Figure 12, using the quantile 

function of standard normal distributions, are reported the two thousands 

simulated points from the four meta distributions: the meta-Gaussian distribution 

(a), the meta-Gumbel distribution (b), the meta-Clayton distribution (c) and the 

meta-t distribution (d).  

 

 

                     (a)                             (b) 

 

                      (c)                             (d) 

Figure 12: Two thousand simulated points from four distribution wit normal margins, constructed 

using the Copula data of figure 11 
18

 

                                                           
18

 McNeil, Frey & Embrechts (2006) p. 195. 

file:///C:/Users/Enrico/Downloads/McNeil,%20Frey%20&%20Embrechts%20-%20Quantitative%20Risk%20Management.pdf
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4.4 Loss Dependence by Means of Copula 

Implicitly we have already met copulas in the previous chapter, where we have 

derived the multivariate distributions in a more familiar and natural way. So the 

natural question is why are we supposed to work with copula? And are not they 

superfluous tools? 

Copulas are a statistical tools to build up multivariate distributions, which only after 

long time from their born have started to be applied in credit risk modeling.  

Recalling the Sklar theorem (4.2) every multivariate distributions can be 

represented as copulas; moreover there will be a unique representation, so a 

unique copula, when the margin distributions are continuous function. 

But multivariate distribution do not explicitly separate marginal distributions and 

correlations as copulas do.  

That is why, being the marginal distribution usually known, copula become so 

popular in the credit risk framework. In particular these are the general framework 

in static default model. 

A static model is a model where default and survival are modeled over a fixed 

horizon      .  Moreover, the set         of obligors is known as well as the 

individual survival probabilities of the obligors,      ). The dependency of default 

is modeled by the known copula          . 

Given these input it is possible generate different scenario for the credit risk. 

From the copula      it is possible to simulate the variables        and define the 

survival of an obligor until time   if:  

        

where the survival probability of obligor   is defined as: 

             

Figure 13 shows the model in a  two obligors scenario. The intersection of the 

survival probabilities divide the unit square into four areas. The pair of random 

variables         drawn from the copula      will represent the coordinates of 

hypothetical points in the squares. Points falling in the        area implies both 

obligors survive; if they fall in the dark grey area         both obligors default; if 

the points fall in one of the light grey areas         or         one of the obligors 

default.  
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Figure 13: The static default model 
19

 

 

It is easy to obtain: 

 The probability of all obligors survive is  

                                  

 

 The probability that the first   obligors survive is  

                                       

 

 The probability that a subset of obligors           survive is  

 

                                 {
                              

                
   

 

 

  

                                                           
19

  P. Schonbucher (2003) p. 338. 
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5 Moment Matching Approximation 

5.1 Introduction 

In this chapter will be presented the "Analytical Pricing of CDOs in a Multi-factor 

Setting by a Moment Matching Approach" by Castagna, Mercurio and Mosconi 

(2012).  

The model will be extended and implemented in the next two chapters.  

 

5.2 The Model 

In the following the original paper of Castagna et al. is reported. 

Consider a portfolio of   obligors, each of them having a unique and distinct loan 

characterized by an Exposure at Default,     . The weight of the    - obligor in the 

portfolio is therefore:        ∑     
 
   ⁄  . Each obligor is characterized by a 

probability of default       and a loss given default       . In particular the     is 

described by a stochastic random variable  , assumed to be independent by other 

sources of riskiness. 

The portfolio loss   can be written as the sum of the single obligor's losses: 

  ∑    

 

   

 ∑         

 

   

 

 

      

where      
 is the indicator function of the default of the    - obligor. 

The stochastic variable  , following Gordy (2003), is assumed to be distributed as 

a           where the distinctive parameters have to be chosen such that:  

    

       

where        , is the mean of the  's distribution. 

According to Gordy (2003), Castagna et al. rewrite the standard deviation   and 

the skewness  , which are functions of   and    in terms of   . That is: 

  √
 

 
       

E. Marcantoni, Collateralized Debt Obligations, BestMasters,
DOI 10.1007/978-3-658-04846-4_5, © Springer Fachmedien Wiesbaden 2014
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 √ 

 
   

    

√      
   

The default    is modeled through a structural approach based on the Merton's 

model (1974) where the obligor's asset dynamics are modeled on one or more 

common factors, thus obtaining a dependency of the obligor. Castagna et al. 

extend this approach, which is at the base of the international regulation in the 

Basel II framework, also known as the  Asymptotic Single-Risk Factor (ASRF),  

including several common factor and contagion effects. 

Obligor's default occurs when the random variable   , expressing the obligor's 

asset return, falls below a certain threshold    related to the default probability   , 

i.e.           .  

Mathematically speaking, they model the obligor's asset dynamic as a Gaussian 

random variable:  

          √     
     

 

      

where  

   ∑        
          and                        

are the common factors describing the effects of several indices (with factor 

loadings   ) and represent the systematic part of the asset return, while  

                 √     
     

is the specific firm effect, which includes a purely idiosyncratic 

effect                   , and a contagion effect      .  

The unconditional correlation of pairs of distinct obligors are:  

        ∑       

 

   

  √     
  √     

      ∑       

 

   

  

 

      

The portfolio loss can be rewritten as: 

  ∑                 
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where    are the default probabilities of the    - obligor  at time T. 

This expression is analytically tractable in order to compute several information 

about the portfolio of loans. Castagna et al.20 provided an accurately way to 

estimate the quantile       for high confidence level  , through a Taylor 

Expansion. This method is really accurate for a high level of confidence but it is 

break down for lower level of confidence such that request for CDO pricing. In this 

setup lies the Moment Matching method21 explained in the following. 

 

5.3 The Moment Matching 

The Moment Matching (MM) method is useful in working with unknown 

distributions whose characteristics are difficult to compute. It consists of replacing 

the original unknown distribution with a proxy distribution, which is easy to work 

with. 

Let   be a random variable, whose distribution is unknown, but assume that it is 

possible to compute its first   moments            .  

Then it is possible to choose a known random variable   with the same    

moments, and replace   by  . The random variable   has to be chosen such that 

it is strictly linked to the unknown random variable  . 

The MM approach has several application in the financial field. The most common 

example is the approximation of the sum of log-normal random variables (whose 

sum is not log-normal distributed) with a lognormally distributed proxy. This 

happens in the Black and Scholes framework, where the prices are assumed to be 

distributed following Log-normal distribution and sum of prices is proxy by a Log-

normal distribution. Another example of the common use of the MM approach, is 

the Asian option pricing.22 

In the CDO pricing framework Castagna et al. use the MM approach to replace the 

loss portfolio distribution   with a well-known proxy   . 

In particular, the distribution given by (5.2) is unknown but its moments are 

analytical computed.  

                                                           
20

 Castagna A. ,Mercurio F., Mosconi P. (2009) 
21

 Castagna A. ,Mercurio F., Mosconi P. (2012). 
22

 E.Levy (1992), S. Turnbull and L.Wakemann (1992). 
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Then a proxy distribution    with known distribution properties is chosen and the 

MM technique is applied.  According to the number   of parameters which define 

the    distribution, the first   moments of   are calibrated on the first   moments of 

  , by solving a system of   equations: 

 

{
 
 

 
 

     
 

     
 

 
 

     
 

 

Solving this system allows to calibrate the   parameters such that the two 

distributions have the same   moments.  

The original distribution given by (5.2) is characterized by the following moments: 

First moment    

The first moment is simply given by the expected loss: 

        ∑    
 

 

 

   

  

 

      

Second moment    

The second moment, starting from its definition, is given by: 

          ∑        

 

     

  

With some algebra: 

   ∑   
 

 

   

 (  
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 ∑       
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)    ( 

 
)   

  
)   

 ∑  
 

 

   

[ (  
 )     
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 ∑∑        
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where     
         

             
    

 .  

 



51 
 

Third moment    

By definition the third moment is defined as:  

          ∑          

 

       

  

With some algebras: 

   ∑  
 

 

   

 (  
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  ∑  

    (  
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  (   ( 
 
)    ( 

 
)   

  
)   

 ∑           
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  (  )  
           )       

 

 

 

 

       

where:  

      (

       

    

 

). 

 

is the symmetric positive definite variance-covariance matrix and  

 

    
                   

Fourth moment    

By definition the fourth moment is defined as:  

          ∑            

 

         

 

With some algebras: 
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where: 

 (  
 )  

   

 
 (  

 ) 

and: 

      (

    

 

      

      

      

 

)  

 

5.4 Approximating distributions 

Castagna et al. develop this technique using two proxy distributions, characterized 

respectively by two and four parameters. 

 The first one is the Gaussian Copula Large Homogeneous Portfolio approximation 

(GCLHP) due to Vasicek (1987), which has been already reported in equation 

(3.32) and it is characterized by two parameters        The second one  is a 

mixture of two different Vasicek distributions23.  

The original loans portfolio is characterized by  -obligors and by many 

dependencies. The main idea is to find two parameters   and   such that the first 

and the second moments of   and    are equal, and then replace   by   . That is, 

mapping the original many dependencies into a two parameters distribution 

       , which entirely codifies the original distribution. 

                                                           
23

 In the following only the 2 parameters proxy distribution, which is the one then used in the practical 
application, is reported. For a complete reading see Castagna et al.(2012). 
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The GCLHP approximation has already been reported in Chapter 3, so as in the 

(3.32), we derive the CDF for        : 

 

                                            

                                                 [
(      √   )        

√ 
] 

 

In order to compute the first   - moments of the approximating distribution        , 

it is more convenient rewrite the (3.32) as: 

    [
       √   

√   
] 

 
      

where S           

The   - moments of         are given by: 

 

                                     

 

where       denotes the   - dimensional normal distributions function and,    

       is a matrix with 1 on the diagonal and   on all the other positions24.  

By solving the system of two non linear equations, it turns out the calibrated    and 

 . The original distribution, and so the original loans portfolio, is now replicated by 

the large portfolio approximation associated with the calibrated parameters. 

In the Vasicek model it is possible to compute the expected tranches loss (ETL) by 

solving analytically the integral in equation (2.4)25. Under the large portfolio 

approximation, the expected loss of a tranche       is given by:  

        
                                         

   
 

 

 
 

       

                                                           
24

 For a complete proof see C.Bluhm, L.Overbeck and C.Wagner (2003) p. 92. 
25

 For a complete proof see  Anna Schlosser (2010) p.  106. 



54 
 

where    is the bivariate normal distribution function and   is the covariance 

matrix: 

  (
  √    

 √     
)  
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6  Extensions to the Model 

In this Chapter will be presented two extensions I bring to the original model of 

Castagna et al., representing the main research targets of the thesis. 

In the first extension I have rewritten the original model in terms of Archimedean 

Copulas. The dependencies structure of the original loss distribution has been 

rewritten in terms of Clayton Copula. The proxy distribution used is the Large 

Portfolio loss distribution for Archimedean copulas, from which I derived the 

moments (Proposition 6.1 and 6.2). Finally I derived  the     formula for this setup 

(Proposition 6.3).  

In the second extension I have provided how the Moment Matching techniques 

can be useful, in highlighting the sources of risk in the reference portfolio and in 

managing them to reach the proper risky profile. 

 

6.1 Archimedean Copulas 

6.1.1 Moments of the original distribution 

In this section I have rewritten the original model in terms of Archimedean 

Copulas. In particular I provide a Moment Matching techniques for the particular 

case of Clayton family, which has been chosen for the close formula of the density 

function of its mixing variable.  

The expansion in moments suggests a possible generalization of the moments in 

terms of Copulas. Let            be a   dimension copula function in which the 

elements with position           are set equal to            and the others are set 

equal to 1. Then, the first (5.5) and the second moment (5.6) can be rewritten as: 

        ∑     
    

 

   

                                  

 

      

   ∑  
 

 

   

 (  
 )     ∑      

 
 

 

   

       

 

      

 

In the specific case where the dependencies structure is modeled by a Clayton 

Copula, as in the extension I provided, by  the definition of Clayton family: 

E. Marcantoni, Collateralized Debt Obligations, BestMasters,
DOI 10.1007/978-3-658-04846-4_6, © Springer Fachmedien Wiesbaden 2014
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       (  
      

       )
 

 
   

 

6.1.2 Approximating distribution 

In this setup the original distribution is replaced by the Large Portfolio loss 

distribution for Archimedean copulas due to P. Schonbucher (2002). This is the 

equivalent of the Vasicek approximation in an Archimedean environment. 

For the mathematical derivation of the loss distribution, the complete reading of 

the article26 is suggested. In the following, the reader will be assumed confident 

with the Schonbucher Large portfolio loss distribution approximation. 

Let denote                     where   is the uniform survival probability and   

is the dependency parameter of the Clayton copula. 

According to Schonbucher all obligors have the same conditional survival 

probability     ,  defined as: 

                        

where   is the mixing variable. For the     the fraction   of default will almost 

surely be       . 

Schonbucher finds that the distribution   and the density   of the Limiting loss 

distribution are: 
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where   and   are the distribution and the density function of the mixing variable 

 .  In the Clayton case   is a Gamma distribution with parameters (
 

 
   ). 

 

 

                                                           
26

 P. Schonbucher (2002). 
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Proposition 6.1 (first moment) The first moment of the Large portfolio loss 

distributions for Archimedean copulas, in the Clayton case is:  

  
    

 

        
 
  

  
 

      

Proof. 
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Multiplying and dividing the second term by         
 

  , it is possible to obtain a 

density function of a       (
 

 
  

 

      
), whose integral over   is 1.  
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Proposition 6.2 (second moment) The second moment of the Large portfolio 

loss distributions for Archimedean copulas, in the Clayton case is: 
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Multiplying and dividing the third term by          
 

  , it is possible to obtain a 

density function of a      (
 

 
  

 

       
), whose integral over   is 1. 
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Finally remembering that the generator of a Clayton copula is           , the 

first (6.6) and the second moments (6.7) became: 

 

  
                                             

  
       

 

        
 
  

  
      

In the Schonbucher Model it is possible computing analytically the integral in (2.4). 

Proposition 6.3 In the Large portfolio loss distributions for Archimedean copulas, 

the Expected Tranches Loss for the Clayton case assuming zero recovery rate, is 

given by: 
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Proof. 
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Multiplying and dividing the second term by          
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6.2 Risk Management 

In this further extension of the original paper I provide a new reading key of the 

MM approach in terms of risk covering. In particular, through a reverse MM 

procedure, I provide a method to modify sources of risk in order to reach the 

desirable risk profile. 

 

6.2.1 Risk Measures 

The Economic Capital is the amount of capital to be set apart and to be 

immediately cashable to absorb losses. This can be determined by different 

measures of risk. One of these is the VaR.  

VaR is strictly linked to a probability distribution of losses over a given period and 

to the statistical concept of quantile.  
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Definition 

Let X be a r.v. and              its distribution function. If   is invertible (i.e., 

continuous and without jumps) the quantile of   of order   is: 

                       

In an economic framework where       is the probability distribution of losses, the 

Value-at-risk of order   is defined as: 

                

The minus sign translates (negative) losses in (positive) risks 

 

6.2.2 The method 

The Moment Matching techniques has been used until now in a pricing CDO 

framework, but it is a general tool to replace whatever distributions with an 

approximating one, which is usually chosen for its better known properties.  

For example assume that a financial institution has a loans portfolio and it has to 

evaluate the Economic Capital (EC) required to face unexpected losses. Through 

a MM approach, the original loss distributions could be replaced with an 

approximating one, whose better known properties make the computation  of the 

risk measures easier, i.e. the VaR. 

Let the portfolio of a financial institution be constituted by   obligors, but 

differently from before the aim is no more the securitization activity, but the 

evaluation of the EC required to face unexpected losses. 

The loss distribution of a similar portfolio is as before described by the equation 

(5.4) and as before, it is replaced by a proxy one, for example the Large Portfolio 

Approximation distribution        , whose parameters   and   are calibrated by a 

MM approach. 

Replacing the original distributions  , with the proxy        , makes the 

computation of the measures associated to the unexpected loss risk, easier. 

For any given level of confidence  , the quantile of order    of the random variable 

            is given by27: 

                                                           
27

  Bluhm, Overbeck and Wagner (2003) p. 90. 
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        (
        √      

√   
) 

 

       

where            and       is simply the quantile of order   of the standard 

normal distribution. 

Suppose a financial institution has a portfolio of loans, whose loss distribution can 

be written as in equation (5.4) and suppose to obtain by a MM approach, the 

calibrated parameters         and         The 99.98% quantile can be easily 

computed by (6.11) as                     

Let us assume the Economic Capital is considered too huge for such financial 

institution, then it can fix the adequate EC and then by a reverse MM procedure,  

modifies the composition of the portfolio of loans, to reach its adequate risk profile. 

In a similar contest the MM approach could be really useful for the financial 

institution because the moment equations highlight the relevance of several 

sources of risks.  

The equation of the second moments  

   ∑  
 

 

   

    
     ∑        

 

   

  ( 
        

  (  )    ) 

highlights several sources of risk: 

i. the concentration risk (the weights);  

ii. the recovery risk (the first moment of the stochastic variable  );  

iii. the default risk (the individual default probabilities)  

iv. the correlation risk (joint probabilities of default of all possible combinations 

of pairs of obligors). 

The main idea is performing the MM approach but in a reverse procedure. In the 

CDO pricing setup, starting from the original moments, the proxy are found, via a 

calibration method.  

Established the maximum Economic Capital which a financial institution is 

available of to set aside for a given portfolio of loans, by a reverse MM procedure it 

is possible to find the optimal value of the original moments, which should imply 

such EC. Then, the optimal value of the original moments will be obtained, by 

modifying the composition of the original portfolio, i.e. by modifying the sources of 

risk highlighted by Moments expansion.   
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In the previous example,                    leads to a                      

for a total amount of the loans portfolio equal to 1000000 Euro. 

Assuming that, for such confidence level, the institution is available to set aside 

just 300000 Euro, this means that the optimal quantile should be        
      

    .  

By  equation (5.2), fixing        
           and leaving the uniform default 

probability equal to 5%,  it is possible to obtain the optimal uniform correlation 

             

So the optimal parameters to obtain the desired quantile, and thus the supportable 

Economic Capital, is                          

These parameters imply that the first and the second moments of the 

approximating distribution are   
       and   

             . 

The moments of the original institution have to be equated to the moments of the 

proxy distribution by a reverse MM procedure. 
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The moment expansion allows to modify the risk sources in order to obtain the 

target moments.  

In the previous numerical example, the target moments are respectively   
       

and   
             . The financial institution should modify the composition of 

its loans portfolio in order to reach this level. That is, by reducing the weights of 

obligors the company will reduce the concentration risk as well as it will reduce the 

default risk by reducing the weight of obligors with higher probability of default. 
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7 Implementation 

In the following chapter a numerical implementation of the Moment Matching 

techniques will be proposed, aiming to price the tranches of a CDX.  

In the first section the pricing of the CDX tranches will be obtained by 

implementing the original model of Castagna et al. reported in chapter 5. This is 

the first time that the method is numerically implemented with real data. The first 

implementation will be denoted in the following as Gaussian, referring to the 

dependence chosen. 

In the second section the pricing of the CDX will be obtained by implementing the 

new model I derived in chapter 6. Being this model, the extension of the original 

one in terms of Clayton copula, will be denoted in the following as Clayton.  

 

7.1 Gaussian implementation 

7.1.1 Data 

The MM techniques is now applied to price the tranches of a CDX. Appendix A 

reports the 125 names and the quotes of the CDS contracts with maturities up to 

10 years. The contracts are expressed in basis points and the quotes were 

collected  on July 3rd 2007. 

For each names the default probabilities up to 10 years are bootstrapped and 

collected in the Appendix B.  

Appendix C reports the discount factors. 

These data were already available in the University of Bologna and so were 

directly used as starting point for all the subsequent computations. 

 

7.1.2 Bootstrapping the default term structure 

A CDS is a credit derivative instrument in which one party called "protection buyer" 

pays a premium, usually on a running base, to another party called "protection 

seller" to obtain protection if a credit event, i.e. default, occurs.  The CDS, as a 

typical credit derivative contract, is characterized by two streams of payments. The 

stream of payment due by "protection buyer"  is called the "premium leg" and the 

stream of payment due by the other party the "premium seller" is called the 

E. Marcantoni, Collateralized Debt Obligations, BestMasters,
DOI 10.1007/978-3-658-04846-4_7, © Springer Fachmedien Wiesbaden 2014
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"protection leg". Roughly speaking, the protection buyer pays a premium on a 

running base until a default event occurs. The protection seller receives the 

premium and has to correspond an amount to the protection buyer in the case a 

default occurs.  

Let      be the survival probability of the issuer up to time  , we can define the 

present value of the two legs. The present value of each payment of the protection 

leg is: 

                          

where               is the probability of observing default between time      and 

   ,     is the payment that has to be done and         is the discount factor. By 

the same, the present value of each payment in  the premium leg is given by: 

 

                

where s is the premium and         is the probability to survive until that period. As 

it is usual in credit derivative contracts, the fair premium is the one  balancing the 

present value of the protection leg and the premium leg, that is: 

∑       

 

   

            ∑         

 

   

                  

 

      

where      is the premium charged for   periods of protection. 

The CDS market competes with equity in terms of the name's information 

provided, because the underlying of the contract is the whole debt of the firm. In 

addition, CDS market is a liquid market at least for the most important firms, and 

looking at the CDS quotes, allows to determine how the market quotes the default 

probability term structure of the name. That is the bootstrapping procedure which 

is used to recover the default probability of the names included in the CDX.  

In particular, assuming that a CDS spread    is quoted for protection over a one-

year horizon28, by the previous definition of a CDS spread we have: 

 

                              

                                                           
28

 Assume for simplicity that the spread is paid in one instance at the end of the year and it is paid even if 
default occurs. 
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from which the survival probability is recovered as: 

 

         
  

   
  

The survival probability up to one year can be now substituted in the two-years 

CDS  

∑       

 

   

            ∑         

 

   

                  

in order to obtain the survival probability up to two years       .  

In general 

             [   
   

   
]   

           

       
∑        

   

   

         

 

      

Bootstrapping consists in extracting the default probability by just applying the 

spread formula using the spread quoted in the market. This is the procedure used  

to obtain the default probability term structure of the 125 names included in the 

CDX.  Table 2 in the Appendix shows the results obtained29. 

 

7.1.3 Regressions 

The asset returns dynamics, according to the most common literature are modeled 

as a Gaussian random variable where a contagion term is included. In the CDX 

pricing several simplifications are carried to the original model, in order to make 

the implementation easier.  

Asset value process is completely described by only one single factor common to 

all counterparties. In addition the contagion terms is now assumed to be worthless.  

The asset value process (5.2) is now simplified as:  

         √     
     

 

      

where the single factor is denoted by           and    are the standardized asset 

value log-returns.  

                                                           
29

 The default probabilities are simply [1 -      ]. 
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Equation (7.3) is nothing but a standard linear regressions and for each name the 

historical standardized asset log-returns are regressed on the standardized factor 

log-returns.  

Because the CDX is an American index which includes only North America 

"names", the single factor chosen is the S&P500 index. The regressions are 

computed using  10 years of historical series. More precisely, the data are 

collected for the period 3/04/1997 - 3/07/2007 using the data provider 

"Datastream". 

Unfortunately the historical data are not available for all the 125 names, but only 

for 88 of them. This is due to the fact that some CDS are referred to unlisted 

branch of multinationals. In that case it has been preferred excluding the names 

from the CDX . Of course, this makes the computation of the tranches prices less 

accurately, because not all "firms" are included, but the main idea of how to 

implement the method still lasts.  Table 4 in the Appendix reports the 88 

coefficients   . 

By just applying to the simplified process in (7.3),  the definition of correlation  

               
         

          
 

   
   

 

the equation in (5.3) simply becomes: 

          

 

 
      

 

The large number of obligors leads to difficulties in the numerical computation  of 

the moments. In particular the difficulties lie in the second moment. By definition 

moments (5.6) the computation of the second moment requires, for 88 obligors: 

- the computations of        pairs of asset correlations    . 

- the consequent computation of      bivariate joint distributions 

  ( 
        

  (  )    ) . 

For this reason the model has been further simplified by dividing the 88 "names" 

into homogeneous classes, where firms belonging to the same class are 

characterized by the same asset dynamic. This reduces the equation (7.3) to the 

following form in terms of classes: 
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         √     
     

 

      

where the index             represent the class.  

The obligors are classified into different risky assets according to several criteria.  

The setup of the equation (7.5) looks like a linear regression again. The only 

difference is that the class value    cannot be observed. In economic literature, 

this problem is known as hidden variables regression but here it is just assumed 

that the coefficient regression    , the request term for computing the correlation, is 

given by the arithmetic mean of the coefficient    of the firms belonging to the 

  class.  

The weight  of each class is given by      ⁄ , where   is the number of obligors 

grouped in the same class and   is the total number of obligors.  

Each class is then characterized by the same probability of defaults    given by 

the arithmetic mean of the default probabilities of the class elements'.  In the 

classes framework, the correlation between classes is given as in (7.4) by: 

         

 

      

but using classes the correlation matrix is hugely reduced. By assuming 4 classes, 

the pairs correlations are reduced to 6, as well as the bivariate joint distributions. 

 

7.1.4 Clustering 

In the tranches pricing the classes are formed in three different ways: Sectors, K-

means, and Neural network. The first one is simply a qualitative method, where 

firms are grouped according to the sector they belong to. The other two methods 

are mathematical ones of grouping data. 

 

Sectors 

Firstly, via a qualitative criterion, the obligors are classified into different risk 

classes according to the "name" sector. Between the same sector class no 

distinction is made between the obligors. 
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The 88 firms are grouped in 4 sector classes: financial & utilities30, non-cyclical, 

cyclical, industrial.  

Table 2 reports the main information of the classes. For each class a default 

probabilities term structure has been recovered by averaging the single term 

structures of the class elements. 

 

SECTORS 

CLASS Firms  Weight                 

financial & utilities 21 0.24 0.42 0.01 0.02 0.04 0.08 

non cyclical 17 0.19 0.33 0.01 0.03 0.07 0.13 

Cyclical 18 0.20 0.46 0.02 0.05 0.10 0.17 

industrial 32 0.36 0.44 0.01 0.03 0.06 0.12 

Table 2:  Sector: classes information 

 

Table 3 reports the correlation matrix between the classes. The correlation 

elements, computed via the equation (7.6),  are necessary for the computation of 

the two dimensional normal distributions requested in the second moment.  

  financial & utilities non cyclical cyclical industrial 

financial & utilities 1 0.14 0.20 0.19 

non cyclical 0.14 1 0.15 0.15 

cyclical 0.20 0.15 1 0.15 

industrial 0.19 0.15 0.21 1 

Table 3: Sector: correlation matrix 

 

K-Means 

K-means clustering is a partitioning method which groups   observations into   

clusters.  The function K-means partitions a vector (or a matrix) of    observations 

into   mutually exclusive clusters and returns a vector of indices, relating to the 

cluster assigned to each observation.  

K-means algorithm treats each element of the observation's vector as an object 

with a location in space. The main idea of the K-means function is to find a 

partitioning such that points within the same group are as close as possible to 

                                                           
30

 The latter class has formed by join financial and utilities firms together. This is due to the minimum 
number of elements a class need to be considered large.  
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each other, and as far as possible from elements of other groups. Each cluster is 

characterized by a particular point called centroid, i.e. the point which minimizes 

the sum of distances of each points and the centroid itself. 

In general, given a set of points                 and an integer   (with      

the k-means function returns a partitions of the points into         such that  

∑ ∑ ‖     ‖
 

     

 

   

 

 

       

is minimal31. Notice that    is the mean of the points belonging to the cluster     

In the application the K-means function is applied to the set of points  

                where            
       is arbitrary  chosen equal to 3. 

The matrix         is partitioned by the algorithm into 3 classes       containing 

respectively            elements.  

Table 4 reports the main information of the classes.  

 

K-MEANS 

CLASS Firms                     

A 32 0.36 0.30 0.01 0.03 0.06 0.11 

B 19 0.22 0.56 0.01 0.02 0.05 0.09 

C 37 0.42 0.45 0.02 0.04 0.08 0.15 

Table 4:  K-means: classes information 

 

Table 5 reports the correlation matrix between the classes.  

  A B C 

A 1 0.17 0.14 

B 0.17 1 0.26 

C 0.14 0.26 1 

Table 5:  K-means: correlation matrix 

 

Neural Networks 

Self-Organizing Map (SOM) is one of the most important artificial neural networks 

(ANN) and it was first developed by T.Kohonen in 1982.  

                                                           
31

 ‖ ‖ is the Euclidian distance. 
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SOM is trained using unsupervised training techniques, in which the networks form 

the classification of the data without external help. It is commonly assumed that 

the class are defined by the input patterns, which shared common features, and 

that the network is able to identify those common features between inputs. 

The main target of SOM is transforming an incoming input matrix of arbitrary 

dimensions into a low-dimensional (typically one or two-dimensional) discrete 

representation of the input space of the training samples, called a map.  

SOM, differently from other type of ANN, preserve the topological properties of the 

input space. A SOM consists of components called nodes (or neurons) and 

associated to each node a weight vector of the same dimension as the input data 

vectors and a position in the map space. The SOM maps an high dimensional 

input space in a low dimensional map space.  The procedure for placing a vector 

from data space onto the map is to first find the node with the closest weight 

vector to the vector taken from data space. Once the closest node is located it is 

assigned the values from the vector taken from the data space. 

As in the k-means application the input matrix is         , where the first column is 

represented by the    regression coefficient    and the second column is formed 

by the    probability of default within one year      
 .  The result is a two 

dimensional array corresponding to the four clusters         containing 

respectively [34 13 18 23] elements. 

Table 6 reports the clusters information. 

 

NEURAL NETWORKS 

CLASS Firms                     

A 23 0.26 0.35 0.01 0.03 0.06 0.11 

B 18 0.20 0.57 0.01 0.03 0.05 0.09 

C 13 0.15 0.25 0.01 0.03 0.06 0.11 

D 34 0.39 0.46 0.02 0.04 0.08 0.15 

Table 6:  NN: classes information 
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Table 7 reports the correlation matrix of the classes. 

 

  A B C D 

A 1 0.20 0.09 0.16 

B 0.20 1 0.14 0.26 

C 0.09 0.14 1 0.11 

D 0.16 0.26 0.11 1 

Table 7:  NN: correlation matrix 

 

7.1.5 Original Moments 

The original distribution of the portfolio loss is given by equation (5.4) and the first 

and the second moments, necessary for the calibration, are respectively derived in  

equations (5.5) and (5.6).  

In addition to the simplification on the asset dynamics summarized in (7.2), further 

assumptions on the original distribution have been done to implement the model.  

The stochastic variable    associated to the     is assumed to be a deterministic 

variable. In addition         for all obligors. 

The first and the second moment are rewritten in the light of the model 

simplification and are written in terms of class           }. That is: 

    ∑     
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Clustering and so reducing the problem dimension, reduces the complexity in the 

numerical computation.  

The advantages of clustering are really clear especially regarding the second 

moment computation. Before clustering the correlation between 88 obligors were 

     which implies that, this is also the number of       which were supposed to 

compute.  
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Grouping the 88 firms into 4 clusters allows to reduce the number of       from 

     to just 6. 

The moments (7.8) and (7.9) are computed for all the three methods of clustering 

and for each methodology  the moments are computed for the different default 

probabilities           and    . 

Table 8 reports the first and the second moments of the original distributions for 

different clustering methods. 

 

 
SECTORS K-MEANS NEURAL NETWORKS 

   M1 M2 M1 M2 M1 M2 

3 0.007069 0.001210 0.007069 0.00166 0.007069 0.001366 

5 0.020726 0.003921 0.020726 0.005173 0.020726 0.004326 

7 0.040329 0.008472 0.040329 0.010724 0.040329 0.009115 

10 0.073329 0.017577 0.073329 0.021288 0.073329 0.018619 

Table 8:  Original moments for different clustering methods 

 

7.1.6 Moment Matching 

Once computed the original moments, they are calibrated on the moments of the 

approximating distributions, via a MM technique. 

The distribution chosen as proxy of the original one, is the Vasicek's Large 

Portfolio Approximation (3.32). That is, a distribution characterized by two 

parameter: the uniform probability of default   and the uniform correlation of 

default     By applying the equation (5.10) the first and second moments of the 

proxy distribution          are given by: 

 

  
   (      )                     

 
 

        
 

  
      

                        

Solving the non linear system     , where   and    are the two-dimension 

vectors of the moments of the two distribution   and   , it is possible to obtain the 

calibrated   and  . 
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Table 9 reports the calibration results for the different clustering methods and for 

different probabilities of default. 

 

 
SECTORS K-MEANS NEURAL NETWORKS 

                

3 0.0071 0.0012 0.0071 0.0017 0.0071 0.0014 

5 0.0207 0.0039 0.0207 0.0052 0.0207 0.0043 

7 0.0403 0.0085 0.0403 0.0107 0.0403 0.0091 

10 0.0733 0.0176 0.0733 0.0213 0.0733 0.0186 

Table 9:  Calibration results 

 

7.1.7 Pricing CDX Tranches 

Once the parameters of the approximating distributions are calibrated, it is 

possible to derive the final tranches price. As it is common for the CDX the 

tranches are divided into                               and 

         

The tranches spread is computed as  in equation (2.7), where the  terms             

are called Expected Tranches Loss (ETL) and are defined as: 

            
 [(   

   )
 
]   [(   

   )
 
]  

   
 

 

       

In order to simplify the computation, it has been assumed that the premia are paid 

in a unique date  which corresponds to the maturity date.32 

In the framework of the Large Portfolio Approximation, the expected losses are 

given by: 

 [(   
    )

 
]       

                √      

 

       

and the ETL in the GCLHPA is already reported in equation (5.11). 

Table 10 reports the ETL, using the Vasicek distribution as        , for  the 

different clustering methods.  

                                                           
32

 It is common practice that the premia are quarterly paid for each year until the maturities.  
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ETL SECTOR 

years 0-3% 3-7% 7-10% 10-15% 15-30% 30-100% 

3 0.2305 4.99E-05 1.31E-06 1.50E-07 1.63E-09 2.72E-14 

5 0.4493 0.0016 0.0004 0.0003 4.46E-05 3.49E-07 

7 0.6740 0.0037 0.0013 0.0010 0.0002 2.078E-06 

10 0.8845 0.0073 0.0031 0.0028 0.0006 7.364E-06 

       ETL K-MEANS 

years 0-3% 3-7% 7-10% 10-15% 15-30% 30-100% 

3 0.1268 0.0360 0.0183 0.0105 3.78E-03 2.57E-04 

5 0.3735 0.1202 0.0573 0.0299 0.0085 3.19E-04 

7 0.5745 0.2543 0.1398 0.0801 0.0261 1.17E-03 

10 0.8144 0.4883 0.3022 0.1841 0.0621 2.54E-03 

       ETL NEURAL NETWORKS 

years 0-3% 3-7% 7-10% 10-15% 15-30% 30-100% 

3 0.1268 0.0360 0.0183 0.0105 3.78E-03 2.57E-04 

5 0.4254 0.1188 0.0477 0.0212 4.41E-03 8.48E-05 

7 0.6533 0.2735 0.1316 0.0652 0.0156 3.48E-04 

10 0.8643 0.5285 0.3115 0.1754 0.0486 1.22E-03 

Table 10:  Expected Tranche Loss for different clustering methods  

 

These ETL term structures, by (2.7) lead to the final tranches spread. For the 

equity tranche it is common practice ,fixing the periodic spread to 500 basis point 

and then quote the upfront needed to make the contract fair.  

The tranches spread are collected in Table 11. 

 

ETL SECTOR  

0-3% 3-7% 7-10% 10-15% 15-30% 30-100% 
5% 0.063553% 0.031523% 0.015861% 0.003744% 7.08E-05% 

ETL K-MEANS 

0-3% 3-7% 7-10% 10-15% 15-30% 30-100% 
5% 0.056966% 0.031225% 0.017877% 0.00571% 0.000231% 

ETL NEURAL NETWORKS 

0-3% 3-7% 7-10% 10-15% 15-30% 30-100% 
5% 0.062475% 0.0318% 0.016666% 0.004357% 0.000108% 

. 

Table 11: Tranches spread for different clustering methods 
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Following the practice of fixing the spread of the equity tranche at the value of 500 

basis points, the upfronts charged on the equity tranches are                  

       and            

 

7.2 Clayton Approach 

In this section the pricing of the CDX tranches will be obtained implementing the 

methods I derived in chapter 6.  

Differently, from the Gaussian implementation, in the following the tranches spread 

will be obtained only for the K-means clustering. The choosing  of this particular 

clustering over the three previous classifications is due to the smallest number of 

classes it provides.   

The moments of the original distributions are computed as in (6.1) and (6.2).  

For the particular case of Clayton copula, it is possible to rewrite the two-

dimensional copula in (6.2) as:   

       ( 
 

       
 

         )
 

 
     

where each pairs of obligors are characterized by the Clayton parameter    .  

In the implementation the parameters     will be recovered for each pair of 

obligors, using the methods developed by Frees and Valdez (1998) in which an 

Archimedean copula is fitted to a bivariate series of data. 

The method consists of two steps. In the first step, among all the Archimedean 

copulas, the best copula fitting data is chosen. In the second step, the parameters 

of the best fitting copula are found via Maximum Likelihood Estimation (MLE).  

Being the implementation based on a Clayton copula, the first step has been 

removed, and then the parameter  , the unique parameter defining a Clayton 

copula, is recovered by MLE. 

The copula has to be fitted to bivariate data, which in this setup are represented by 

CDS time series. The dependencies between each pair of obligors is represented 

by the ML estimated of    , which is the parameter of the Clayton copula fitting the 

bivariate time series CDS. 

As in the Gaussian implementation, the large number of the reference portfolio, 

leads to several difficulties. This means, that for the 88 obligors should be 
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collected 3828 pairs of CDS time series and then 3828 Clayton copula should be 

fitted to them, leading to the MLE of the 3828 parameters    .  

In addition this step should be repeated for the different maturities of the CDS. In 

our case, CDS for       and    years maturities are requested according to the 

maturities of the CDX. 

 

7.2.1 Construction of the Data 

As in the Gaussian setup the problems of the large portfolio has been solved by 

dividing obligors into homogeneous classes. Differently from the Gaussian setup, 

in the following the implementation has been conducted only for the K-means 

clustering. The choosing of this particular division is due to the smallest number of 

group it provided as well as to the bigger number of elements grouped in each 

class. 

The time series of the 88 5 year CDS are collected by Bloomberg. More precisely, 

the time series cover the period from 1/03/2004 to 01/07/2007. The latter is the 

date from which the individual default probability are bootstrapped.  

Unfortunately, the time series of the CDS with maturities 3, 7 and 10 years were 

not suitable for an implementation. So in the following the dependencies of time 

series are assumed to be equal indifferently by the maturity of the CDS.  

The characteristics of three classes provided by K-means clustering are the same 

reported in Table 4. 

By clustering the total amount of obligors into 3 classes, the estimation of the 

parameters    
33  is reduced. In particular, decreasing from 3828 to just 3. 

The Clayton copula has to be fitted to the bivariate data, which are now 

represented by the CDS time series of the centroid. The centroid is a statistical 

characteristics of each class and its time series has been artificially constructed, 

as arithmetic mean of the CDS time series of the firms belonging to the same 

class.  

The bivariate date have been fitted by Clayton copula, whose parameters are 

reported in Table 12.  The estimation of the Clayton parameters has been 

                                                           
33

 Notice that the parameter  is now referred to the classes    . 
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implemented using an Excel program, based on the work of Frees and Valdez,  

developed by the Prof. U. Cherubini of University of Bologna.  

 

                      

AB      9.796 
AC 4.887 
BC 4.219 

Table 12:  Clayton parameter for three classes of obligors 

 

7.2.2 Original Moments 

The original moments are computed as in (6.1) and (6.2), where the copula      

and the        are in the Clayton case rewritten as: 

                                                

       (  
      

       )
 

 
   

This means that the first moment of the original distribution (6.1) is equivalent to 

the first moments of the original distribution in the Gaussian case (5.5). The  

second moments of the Gaussian case (5.6) differs from the second moments in 

the Clayton case,  for the second terms in (6.2). The previous estimated 

parameters allow to compute the original moments, which are collected in Table 

13. 

 

Clayton: K-MEANS 

years       

3 0.0070691 0.0036446 

5 0.0207258 0.0106508 

7 0.0403291 0.0210029 

10 0.0733294 0.0382798 

Table 13: Original Moments in the Clayton case 

 

7.2.3 Moment Matching 

Once the original moments have been computed, they are calibrated on the 

moments of the approximating distributions, by the MM procedure. 

That is, by equating the original moments in (6.1) and (6.2) to the moments of the 

proxy distributions recovered in (6.8) and (6.9), the uniform survival probability   
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and the uniform parameter   are then obtained. Table 14 collected the uniform 

parameters       for different maturities.      

                                                                                                            

Clayton: calibrated parameters 

years           

3 0.9929 0.0071 82.011 

5 0.9793 0.0207 44.446 

7 0.9597 0.0403 22.568 

10 0.9267 0.0733 11.672 

Table 14:  Calibration result for the Clayton case 

 

7.2.4 Pricing CDX Tranches 

The final CDX tranches are computed by applying the spread formula in (2.7). 

However, the ETL formula for the Clayton setup differs from the one used in the 

Gaussian framework. According to the preposition 6.3, I derived in the previous 

sections, the ETL for different maturities are collected in Table 15. 

 

Clayton: ETL K-MEANS 

years 0-3% 3-7% 7-10% 10-15% 15-30% 30-100% 

3 0.0414 0.0271 0.0157 0.0166 1.06E-02 2.29E-03 

5 0.0883 0.0632 0.0387 0.0434 0.0313 9.97E-03 

7 0.1664 0.1211 0.0746 0.0843 0.0611 1.98E-02 

10 0.2931 0.2185 0.1358 0.1541 0.1124 3.62E-02 

Table 15:   ETL for the Clayton case 

 

Finally, by using the ETL in equation (2.7) the tranches price spreads are obtained 

in Table 16.  

 

Clayton: ETL K-MEANS 

0-3% 3-7% 7-10% 10-15% 15-30% 30-100% 

5% 0.0228% 0.01356% 0.015497% 0.011049% 0.003419% 

Table 16:   Tranches spread for Clayton case 

 

As usual, the spread of the equity tranche is fixed to 500 bps and the upfront 

charged on the equity tranche is equal to     
       

        . 
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7.3 Results comments 

In Figure 14 the K-means tranches spread obtained in the Gaussian case and in 

the Clayton case are plotted. By comparing the tranches prices, it is possible to 

notice, that the Clayton approach leads to smaller equity and mezzanine tranches. 

The equity tranches, being the running spread fixed to 500 bps, is compared in 

terms of upfront. Then, the senior and the super senior tranches are bigger, when 

the dependence is modeled by Clayton copula. The comparison is more clear 

looking at the lower panel of the figure, where the y-axis are represented in log-

scale. 

The results obtained for the Clayton approach are only in parts coherent, with the 

lower tail dependence. As already reported in section 4.3 the tail dependence is 

strictly related with the marginal distributions. Roughly speaking, the tail 

dependence for a bivariate situation refers to the probability that a margins 

exceeds a certain thresholds, given that the other margin has already exceeded 

the same thresholds. In our framework, the margins distributions are the 

probability that the asset value of a firm is smaller than a certain thresholds.  That 

is, when the asset value of a firm is smaller than the thresholds, there is a 

tendency of other asset value firms' to be smaller than their thresholds as well. 

Generally speaking, this  implies the tendency of defaults occurring in a chain 

situation.  

According to this propriety the Clayton premia are expected to be greater than the 

Gaussian ones, because the greater is the probability of chain defaults, and so the 

greater is the expected loss, the greater is the amount requested for giving 

protection. However this evidence is only respected for the senior and super 

senior tranches, because in these tranches the lower tail dependence has more 

weight. In fact to reach such percentages of losses, the chain default, proper of the 

Clayton dependence, is fundamental. 
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Figure 14: Tranches spreads for Gaussian and Clayton approach in linear and log-scale 
34

 

 

 

 

 

 

 

                                                           
34

  Own source. 
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8 Conclusion  

The MM method provides a computational methodology, which is based on 

sophisticated framework, but at the same time avoids huge numerical procedure, 

required by most complex models. It provides a closed formula structure, which 

makes the computation quick and easier.  

Furthermore, the method is consistent with the analytical Credit VaR computation 

technique, presented by Castagna et al. (2009). This allows a consistent 

methodology to price the risk of CDO and to estimate the Credit VaR. 

The difficulties of this technique lies in the original moments computation. In fact 

the number of inputs required to compute them is huge and a lot of assumptions 

are necessary for some of them.  

Once the contagion terms have been eliminated and the asset dynamics 

dependencies are reduced by to one common factor, the implementation has been 

possible.  

In addition, the large number of obligors in the portfolio increases the computation 

difficulty. Working with huge numbers of obligors is difficult both to collect all the 

time series required and to manage them in calculations. 

A method to avoid these difficulties, proposed in the thesis, is clustering. However, 

grouping the obligors in classes and assuming homogenous classes, further 

increase the errors due to simplification.  

The Clayton approach shares with the Gaussian approach the same problems of 

numerousness. The results obtained in the two methods, are consistent with the 

different dependence characteristic of the copula used, only for the higher 

tranches, such as the senior and the super senior. 

  

  

E. Marcantoni, Collateralized Debt Obligations, BestMasters,
DOI 10.1007/978-3-658-04846-4, © Springer Fachmedien Wiesbaden 2014
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10 Appendix A 

Composition of the reference portfolio and quotes of the CDS contracts in 3rd July 

2007 

CDS 1 2 3 4 5 6 7 8 9 10 

ACE US 10.30 14.10 18.00 24.30 29.50 34.24 39.00 41.32 43.67 46.00 

AET US 6.83 8.04 10.29 16.00 22.00 25.60 29.22 32.08 34.96 37.83 

AL CN 9.70 13.40 17.00 23.11 31.90 37.43 43.00 48.51 54.06 59.60 

AA US 14.06 18.45 24.09 34.33 43.70 52.08 60.50 67.50 74.56 81.60 

AT US 80.67 115.99 195.13 237.50 329.00 364.40 400.00 414.93 429.99 445.00 

MO US 13.30 15.82 19.50 21.78 28.00 34.13 40.30 45.51 50.76 56.00 

AEP US 8.02 9.62 12.47 16.70 21.80 25.91 30.04 32.63 35.23 37.83 

AXP US 7.80 10.14 13.90 16.40 18.00 20.04 22.10 24.42 26.77 29.10 

AIG US 12.80 13.40 14.00 14.60 14.70 16.59 18.50 20.16 21.83 23.50 

AMGN US 8.13 9.83 12.68 16.50 21.00 26.49 32.00 36.65 41.33 46.00 

APC US 21.07 23.92 21.00 28.67 35.80 44.23 52.70 57.78 62.90 68.00 

ARW US 14.60 19.40 25.23 36.70 47.80 58.87 70.00 77.96 85.99 94.00 

T US 8.34 10.04 12.99 18.69 23.00 28.86 34.75 34.75 34.75 34.75 

24004Z US 6.72 7.72 9.98 12.10 14.80 19.18 23.58 27.19 30.83 34.46 

AZO US 8.99 11.41 18.00 23.63 33.90 42.18 50.50 57.47 64.49 71.50 

BAX US 5.75 6.36 8.11 10.90 14.30 17.89 21.50 23.82 26.17 28.50 

8891Z US 2.25 4.04 6.35 7.10 8.30 10.15 12.00 13.06 14.13 15.20 

BSX US 24.95 34.44 45.03 60.50 77.00 89.90 102.87 111.25 119.70 128.12 

BMY US 6.18 6.88 8.84 12.60 16.50 20.64 24.81 27.86 30.93 34.00 

BNI US 7.70 10.30 12.90 18.38 25.50 32.73 40.00 44.31 48.66 53.00 

CPB US 8.99 11.09 14.00 20.44 20.70 25.59 30.50 32.99 35.50 38.00 

8125Z US 11.36 15.30 20.00 23.00 25.00 28.49 32.00 34.22 36.47 38.70 

CAH US 10.93 13.83 17.97 26.00 34.50 43.73 53.00 59.30 65.66 72.00 

CCL US 8.88 12.67 15.27 20.75 25.40 30.69 36.00 39.01 42.04 45.07 

CAT US 9.53 9.30 10.29 13.90 18.20 22.69 27.20 30.52 33.86 37.20 

CBS US 16.43 22.03 28.65 38.75 53.70 65.61 77.58 77.58 77.58 77.58 

CTX US 41.86 62.59 83.20 109.63 129.20 141.62 154.10 161.86 169.69 177.50 

CTL US 16.11 21.50 28.03 39.27 53.00 64.09 75.23 84.76 94.37 103.95 

CI US 6.94 8.04 10.40 16.60 23.00 26.92 30.86 34.09 37.34 40.58 

CIT US 19.99 26.97 35.00 40.09 47.00 50.74 54.50 57.75 61.03 64.30 

15659Z US 8.99 11.09 14.34 20.03 26.00 32.97 39.98 45.02 50.11 55.18 

CSC US 25.81 35.70 46.69 67.70 89.70 104.16 118.70 132.83 147.09 161.30 

CAG US 9.20 12.77 15.50 21.16 28.00 34.98 42.00 46.31 50.66 55.00 

COP US 7.15 9.41 12.78 15.60 20.00 22.99 26.00 28.85 31.73 34.60 

CEG US 9.42 11.62 15.07 19.31 26.70 33.37 40.08 44.87 49.69 54.50 

8191Z US 35.07 46.31 56.40 65.71 74.20 78.59 83.00 86.25 89.53 92.80 

COX US 8.99 10.98 14.24 19.00 25.60 32.97 40.39 44.75 49.15 53.54 

CSX US 10.18 12.88 22.00 26.30 49.00 58.47 68.00 74.64 81.33 88.00 

CVS US 9.31 11.51 14.86 20.95 28.80 36.38 44.00 49.97 56.00 62.00 

DE US 5.64 6.57 10.92 15.09 18.80 23.12 27.47 30.16 32.87 35.58 

DVN US 7.00 9.30 11.50 17.30 22.70 27.59 32.50 35.42 38.36 41.30 

E. Marcantoni, Collateralized Debt Obligations, BestMasters,
DOI 10.1007/978-3-658-04846-4, © Springer Fachmedien Wiesbaden 2014
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D US 9.64 10.04 14.03 17.25 21.10 25.04 29.00 32.48 36.00 39.50 

DUK US 7.80 9.41 12.06 15.10 19.00 23.33 27.68 29.46 31.24 33.03 

DD US 7.30 9.60 12.00 14.78 18.40 23.83 29.30 31.85 34.43 37.00 

EMN US 14.17 18.56 24.19 32.27 43.90 53.92 64.00 70.74 77.53 84.30 

EQ US 21.28 28.97 37.88 53.98 71.30 87.76 104.30 118.26 132.33 146.37 

EXPE US 46.38 80.54 127.21 174.40 235.60 267.36 299.30 316.96 334.76 352.52 

FRE US 3.90 6.46 8.63 10.35 9.40 10.79 12.19 13.24 14.31 15.37 

FNM US 3.45 6.67 9.36 9.10 10.50 12.52 14.55 15.43 16.32 17.21 

M US 17.19 22.66 36.00 55.01 74.30 89.11 104.00 114.62 125.32 136.00 

FDC US 124.95 201.90 287.55 364.83 422.70 456.20 489.89 507.17 524.60 541.98 

FE US 10.71 13.72 17.76 21.10 25.30 30.88 36.50 39.49 42.50 45.50 

GELK US 8.88 11.19 12.30 15.81 17.70 19.20 20.70 21.80 22.90 24.00 

GIS US 7.80 9.30 14.00 17.04 21.10 26.14 31.20 35.12 39.06 43.00 

GR US 3.90 7.62 11.43 15.70 23.30 29.48 35.70 39.95 44.23 48.50 

HAL US 6.20 8.20 10.30 15.50 20.70 25.09 29.50 32.98 36.50 40.00 

HPQ US 5.97 6.57 8.43 12.50 17.30 20.17 23.06 23.06 23.06 23.06 

HON US 7.50 10.20 13.00 16.70 19.90 25.93 32.00 35.95 39.93 43.90 

IACI US 35.93 50.41 66.06 95.60 126.20 148.22 170.36 183.58 196.91 210.20 

  19.77 22.56 26.58 39.60 53.50 66.12 78.80 85.83 92.93 100.00 

IBM US 6.40 7.30 9.36 13.00 17.30 20.07 22.86 24.44 26.03 27.62 

ILFC US 8.23 9.41 13.80 17.50 20.70 22.70 24.70 26.69 28.70 30.70 

IP US 9.42 15.90 23.00 32.79 39.80 50.12 60.50 66.64 72.83 79.00 

JCP US 14.06 18.56 29.50 39.89 54.50 67.22 80.00 87.96 95.99 104.00 

JNY US 29.26 39.27 66.00 92.04 118.00 137.70 157.50 170.61 183.82 197.00 

KFT US 11.69 14.98 20.00 25.79 36.30 45.33 54.40 61.14 67.93 74.70 

LEN US 30.33 48.31 77.50 102.53 120.60 131.27 142.00 149.70 157.46 165.20 

LTD US 14.92 19.82 32.50 47.19 60.50 72.07 83.70 93.49 103.36 113.20 

LMT US 3.45 5.30 8.00 12.20 16.30 20.54 24.80 27.09 29.40 31.70 

LTR US 7.30 9.60 12.00 14.50 15.50 19.33 23.17 25.44 27.72 30.00 

MAR US 11.25 14.67 19.42 31.35 41.80 53.56 65.39 72.89 80.46 88.00 

MMC US 26.20 36.90 47.50 60.80 71.70 87.31 103.00 112.95 122.99 133.00 

16302Z US 17.40 26.03 35.00 39.37 51.60 53.79 56.00 57.89 59.80 61.70 

MCD US 8.13 8.56 10.00 16.22 17.00 22.09 27.20 30.45 33.73 37.00 

MCK US 12.22 15.93 20.67 29.00 37.80 47.97 58.20 64.70 71.26 77.80 

MWV US 13.30 24.10 34.70 52.13 63.00 75.72 88.50 98.72 109.02 119.30 

MET US 5.70 7.90 10.00 12.90 15.30 17.89 20.50 22.49 24.50 26.50 

MOT US 12.33 16.03 20.98 27.64 37.00 46.35 55.76 63.35 71.01 78.65 

2381A US 5.86 6.46 8.32 10.20 13.10 16.43 19.78 21.51 23.26 25.00 

NWL US 8.45 9.62 14.50 20.13 25.60 32.03 38.50 42.32 46.16 50.00 

14408Z US 8.23 10.04 12.89 18.10 24.00 30.18 36.39 40.69 45.03 49.36 

JWN US 8.13 9.83 14.00 16.84 22.40 29.18 36.00 39.98 44.00 48.00 

NSC US 9.90 13.70 17.40 22.91 31.70 39.48 47.30 52.41 57.56 62.70 

NOC US 5.50 7.00 8.50 12.90 16.70 20.69 24.70 27.06 29.43 31.80 

OLN US 35.20 50.40 65.50 87.52 117.70 139.74 161.90 175.70 189.62 203.50 

OMC US 6.62 7.62 9.77 14.20 18.80 24.10 29.42 33.63 37.88 42.12 

PGN US 7.26 8.56 11.02 14.10 17.80 21.65 25.52 27.95 30.39 32.83 

PHM US 45.30 68.79 105.00 140.48 172.50 185.71 199.00 209.39 219.86 230.30 



87 
 

RRD US 24.62 34.02 44.41 68.59 81.20 95.63 110.14 120.91 131.77 142.60 

RDN US 28.20 39.90 51.50 65.80 77.70 81.89 86.10 89.09 92.10 95.10 

RTN US 7.05 8.25 10.60 13.60 16.80 20.79 24.80 27.19 29.60 32.00 

578903Z US 169.90 194.70 203.50 216.30 229.30 238.33 247.40 253.44 259.53 265.60 

ROH US 9.00 12.30 15.50 20.13 25.80 32.38 39.00 44.64 50.33 56.00 

SWY US 10.71 13.19 19.53 27.44 39.10 49.02 59.00 65.64 72.33 79.00 

SLE US 10.50 14.77 23.50 31.86 42.40 52.44 62.53 70.32 78.17 86.00 

SRE US 8.77 10.77 13.92 17.50 22.00 27.08 32.19 34.97 37.78 40.58 

12968Z US 10.39 13.09 16.93 19.82 26.00 28.73 31.47 34.56 37.68 40.79 

LUV US 10.82 14.14 22.22 35.46 50.00 61.57 73.20 80.93 88.73 96.50 

S US 20.42 27.71 36.22 50.28 61.70 72.83 84.03 94.02 104.10 114.15 

HOT US 26.02 42.63 73.31 108.29 141.00 170.31 199.78 215.44 231.24 246.99 

TGT US 6.83 6.88 11.95 15.60 20.50 25.87 31.27 34.94 38.63 42.32 

TIN US 18.80 35.90 51.70 73.43 92.40 107.81 123.30 134.78 146.36 157.90 

3339Z US 6.40 7.30 9.36 12.30 16.00 18.74 21.50 24.15 26.83 29.50 

ALL US 6.80 9.10 11.50 14.30 16.10 19.54 23.00 24.33 25.67 27.00 

CB US 7.50 9.70 12.00 14.30 16.00 18.49 21.00 22.99 25.00 27.00 

DOW US 6.62 10.90 15.50 18.89 26.40 32.23 38.10 44.17 50.29 56.40 

HIG US 6.30 8.60 11.00 13.50 16.00 18.24 20.50 22.66 24.83 27.00 

KR US 10.50 14.35 22.00 31.45 42.80 53.61 64.47 72.78 81.15 89.50 

SHW US 12.70 17.40 22.00 27.95 34.30 40.13 46.00 50.31 54.66 59.00 

DIS US 6.08 6.78 8.74 12.20 16.30 21.57 26.86 29.79 32.74 35.69 

TWX US 9.64 12.04 15.58 22.39 26.80 34.55 42.34 48.16 54.02 59.87 

TOL US 26.56 44.00 82.30 105.83 126.80 139.62 152.50 161.89 171.36 180.80 

RIG US 11.04 11.70 13.00 19.10 24.30 31.08 37.90 42.38 46.90 51.40 

TSN US 18.05 24.66 35.70 51.82 66.80 82.85 98.98 109.29 119.69 130.06 

UNP US 15.90 17.20 18.50 19.00 33.00 41.23 49.50 54.98 60.50 66.00 

UHS US 23.01 31.70 41.41 59.30 78.50 93.56 108.70 118.33 128.03 137.71 

VLO US 9.60 13.40 17.20 24.14 31.80 38.33 44.90 48.95 53.03 57.10 

VZ US 7.37 8.78 11.23 16.53 22.00 27.49 33.01 37.72 42.48 47.22 

WMT US 5.97 5.09 8.11 9.01 11.00 13.08 15.17 16.63 18.10 19.56 

WM US 14.38 22.20 31.50 38.60 45.30 48.24 51.20 54.45 57.73 61.00 

WFC US 8.88 8.50 9.30 11.70 13.50 14.75 16.00 17.59 19.20 20.80 

WY US 10.61 19.00 28.00 40.81 51.50 64.37 77.30 86.82 96.43 106.00 

WHR US 9.85 12.35 17.97 32.58 38.80 49.66 60.58 67.46 74.39 81.30 

WYE US 6.18 7.09 9.05 10.90 13.50 16.22 18.96 21.30 23.65 26.00 

XL US 12.30 17.10 22.00 30.50 38.40 42.69 47.00 49.99 53.00 56.00 
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11 Appendix B   

Bootstrapped defaults probabilities 

CDS 1 2 3 4 5 6 7 8 9 10 

ACE US 0.002 0.005 0.009 0.016 0.025 0.035 0.046 0.056 0.067 0.078 

AET US 0.001 0.003 0.005 0.011 0.019 0.026 0.035 0.044 0.054 0.065 

AL CN 0.002 0.004 0.009 0.016 0.027 0.038 0.051 0.066 0.083 0.102 

AA US 0.002 0.006 0.012 0.023 0.037 0.053 0.072 0.091 0.114 0.138 

AT US 0.013 0.038 0.096 0.153 0.260 0.334 0.413 0.470 0.528 0.584 

MO US 0.002 0.005 0.010 0.015 0.024 0.035 0.048 0.062 0.078 0.097 

AEP US 0.001 0.003 0.006 0.011 0.018 0.026 0.036 0.045 0.054 0.065 

AXP US 0.001 0.003 0.007 0.011 0.015 0.020 0.026 0.033 0.041 0.050 

AIG US 0.002 0.004 0.007 0.010 0.012 0.017 0.022 0.027 0.034 0.040 

AMGN US 0.001 0.003 0.006 0.011 0.018 0.027 0.038 0.051 0.065 0.080 

APC US 0.004 0.008 0.010 0.019 0.030 0.045 0.063 0.078 0.096 0.116 

ARW US 0.002 0.006 0.013 0.025 0.040 0.060 0.083 0.105 0.131 0.158 

T US 0.001 0.003 0.007 0.013 0.019 0.029 0.042 0.047 0.053 0.058 

24004Z US 0.001 0.003 0.005 0.008 0.012 0.020 0.028 0.038 0.048 0.061 

AZO US 0.001 0.004 0.009 0.016 0.029 0.043 0.060 0.079 0.100 0.123 

BAX US 0.001 0.002 0.004 0.007 0.012 0.018 0.026 0.033 0.041 0.050 

8891Z US 0.000 0.001 0.003 0.005 0.007 0.010 0.014 0.018 0.022 0.026 

BSX US 0.004 0.011 0.022 0.040 0.064 0.090 0.120 0.147 0.177 0.209 

BMY US 0.001 0.002 0.004 0.008 0.014 0.021 0.030 0.039 0.048 0.059 

BNI US 0.001 0.003 0.006 0.012 0.022 0.034 0.048 0.061 0.075 0.091 

CPB US 0.001 0.004 0.007 0.014 0.017 0.026 0.036 0.045 0.055 0.065 

8125Z US 0.002 0.005 0.010 0.015 0.021 0.029 0.038 0.046 0.056 0.066 

CAH US 0.002 0.005 0.009 0.017 0.029 0.045 0.063 0.081 0.101 0.123 

CCL US 0.001 0.004 0.008 0.014 0.021 0.031 0.043 0.053 0.065 0.077 

CAT US 0.002 0.003 0.005 0.009 0.015 0.023 0.033 0.042 0.053 0.065 

CBS US 0.003 0.007 0.014 0.026 0.045 0.066 0.092 0.103 0.115 0.126 

CTX US 0.007 0.021 0.041 0.072 0.106 0.138 0.173 0.205 0.239 0.275 

CTL US 0.003 0.007 0.014 0.026 0.045 0.065 0.089 0.114 0.143 0.175 

CI US 0.001 0.003 0.005 0.011 0.020 0.028 0.037 0.047 0.058 0.070 

CIT US 0.003 0.009 0.017 0.027 0.039 0.051 0.063 0.077 0.091 0.107 

15659Z US 0.001 0.004 0.007 0.013 0.022 0.034 0.048 0.062 0.078 0.095 

CSC US 0.004 0.012 0.023 0.045 0.075 0.104 0.137 0.175 0.216 0.262 

CAG US 0.002 0.004 0.008 0.014 0.024 0.036 0.050 0.063 0.078 0.094 

COP US 0.001 0.003 0.006 0.010 0.017 0.023 0.031 0.039 0.049 0.060 

CEG US 0.002 0.004 0.008 0.013 0.023 0.034 0.048 0.062 0.077 0.094 

8191Z US 0.006 0.015 0.028 0.043 0.061 0.077 0.095 0.112 0.131 0.150 

COX US 0.001 0.004 0.007 0.013 0.022 0.034 0.049 0.062 0.076 0.092 

CSX US 0.002 0.004 0.011 0.018 0.042 0.060 0.081 0.101 0.124 0.148 

CVS US 0.002 0.004 0.007 0.014 0.024 0.037 0.053 0.069 0.087 0.107 

DE US 0.001 0.002 0.005 0.010 0.016 0.024 0.033 0.041 0.051 0.062 

DVN US 0.001 0.003 0.006 0.012 0.019 0.028 0.039 0.049 0.059 0.071 

D US 0.002 0.003 0.007 0.012 0.018 0.025 0.035 0.045 0.056 0.068 
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DUK US 0.001 0.003 0.006 0.010 0.016 0.024 0.033 0.040 0.048 0.057 

DD US 0.001 0.003 0.006 0.010 0.016 0.024 0.035 0.044 0.053 0.064 

EMN US 0.002 0.006 0.012 0.022 0.037 0.055 0.076 0.096 0.118 0.143 

EQ US 0.004 0.010 0.019 0.036 0.060 0.088 0.122 0.158 0.198 0.242 

EXPE US 0.008 0.027 0.063 0.114 0.190 0.253 0.323 0.380 0.439 0.499 

FRE US 0.001 0.002 0.004 0.007 0.008 0.011 0.014 0.018 0.022 0.027 

FNM US 0.001 0.002 0.005 0.006 0.009 0.013 0.017 0.021 0.025 0.030 

M US 0.003 0.008 0.018 0.037 0.062 0.090 0.122 0.152 0.186 0.223 

FDC US 0.021 0.066 0.139 0.229 0.320 0.398 0.478 0.541 0.602 0.661 

FE US 0.002 0.005 0.009 0.014 0.021 0.031 0.044 0.054 0.065 0.078 

GELK US 0.001 0.004 0.006 0.011 0.015 0.019 0.024 0.029 0.035 0.041 

GIS US 0.001 0.003 0.007 0.011 0.018 0.027 0.037 0.048 0.061 0.075 

GR US 0.001 0.003 0.006 0.011 0.020 0.030 0.043 0.055 0.069 0.084 

HAL US 0.001 0.003 0.005 0.010 0.018 0.026 0.035 0.045 0.057 0.069 

HPQ US 0.001 0.002 0.004 0.008 0.015 0.021 0.028 0.031 0.035 0.039 

HON US 0.001 0.003 0.007 0.011 0.017 0.027 0.039 0.050 0.062 0.076 

IACI US 0.006 0.017 0.033 0.063 0.104 0.146 0.194 0.235 0.280 0.327 

  0.003 0.008 0.013 0.027 0.045 0.067 0.093 0.115 0.140 0.167 

IBM US 0.001 0.002 0.005 0.009 0.015 0.020 0.027 0.033 0.040 0.048 

ILFC US 0.001 0.003 0.007 0.012 0.017 0.023 0.029 0.036 0.044 0.053 

IP US 0.002 0.005 0.012 0.022 0.033 0.051 0.072 0.090 0.111 0.134 

JCP US 0.002 0.006 0.015 0.027 0.046 0.068 0.095 0.118 0.145 0.174 

JNY US 0.005 0.013 0.033 0.061 0.098 0.136 0.180 0.220 0.263 0.309 

KFT US 0.002 0.005 0.010 0.017 0.031 0.046 0.065 0.083 0.104 0.128 

LEN US 0.005 0.016 0.039 0.068 0.099 0.128 0.160 0.191 0.224 0.258 

LTD US 0.002 0.007 0.016 0.032 0.051 0.073 0.098 0.125 0.156 0.189 

LMT US 0.001 0.002 0.004 0.008 0.014 0.021 0.030 0.037 0.046 0.055 

LTR US 0.001 0.003 0.006 0.010 0.013 0.020 0.028 0.035 0.043 0.052 

MAR US 0.002 0.005 0.010 0.021 0.035 0.055 0.078 0.099 0.123 0.149 

MMC US 0.004 0.012 0.024 0.040 0.060 0.087 0.120 0.150 0.182 0.218 

16302Z US 0.003 0.009 0.017 0.026 0.043 0.054 0.065 0.077 0.089 0.101 

MCD US 0.001 0.003 0.005 0.011 0.014 0.023 0.033 0.042 0.053 0.064 

MCK US 0.002 0.005 0.010 0.019 0.032 0.049 0.069 0.088 0.109 0.132 

MWV US 0.002 0.008 0.017 0.035 0.053 0.076 0.104 0.132 0.164 0.198 

MET US 0.001 0.003 0.005 0.009 0.013 0.018 0.024 0.031 0.038 0.046 

MOT US 0.002 0.005 0.010 0.019 0.031 0.047 0.066 0.086 0.109 0.135 

2381A US 0.001 0.002 0.004 0.007 0.011 0.017 0.024 0.030 0.036 0.043 

NWL US 0.001 0.003 0.007 0.014 0.022 0.033 0.046 0.058 0.071 0.086 

14408Z US 0.001 0.003 0.006 0.012 0.020 0.031 0.044 0.056 0.070 0.085 

JWN US 0.001 0.003 0.007 0.011 0.019 0.030 0.043 0.055 0.068 0.083 

NSC US 0.002 0.005 0.009 0.015 0.027 0.040 0.057 0.072 0.089 0.107 

NOC US 0.001 0.002 0.004 0.009 0.014 0.021 0.030 0.037 0.046 0.055 

OLN US 0.006 0.017 0.033 0.058 0.097 0.138 0.185 0.226 0.271 0.319 

OMC US 0.001 0.003 0.005 0.010 0.016 0.025 0.035 0.047 0.059 0.074 

PGN US 0.001 0.003 0.006 0.009 0.015 0.022 0.031 0.038 0.047 0.057 

PHM US 0.008 0.023 0.052 0.092 0.140 0.178 0.220 0.260 0.302 0.345 

RRD US 0.004 0.011 0.022 0.046 0.068 0.095 0.128 0.159 0.194 0.232 
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RDN US 0.005 0.013 0.026 0.044 0.064 0.081 0.099 0.116 0.134 0.153 

RTN US 0.001 0.003 0.005 0.009 0.014 0.021 0.030 0.037 0.046 0.055 

578903Z US 0.028 0.064 0.098 0.137 0.179 0.219 0.260 0.299 0.337 0.376 

ROH US 0.001 0.004 0.008 0.013 0.022 0.033 0.047 0.061 0.078 0.097 

SWY US 0.002 0.004 0.010 0.018 0.033 0.050 0.070 0.089 0.111 0.134 

SLE US 0.002 0.005 0.012 0.021 0.036 0.053 0.074 0.096 0.120 0.146 

SRE US 0.001 0.004 0.007 0.012 0.019 0.028 0.039 0.048 0.058 0.070 

12968Z US 0.002 0.004 0.008 0.013 0.022 0.029 0.037 0.047 0.058 0.070 

LUV US 0.002 0.005 0.011 0.024 0.042 0.063 0.087 0.109 0.135 0.162 

S US 0.003 0.009 0.018 0.034 0.052 0.073 0.098 0.126 0.156 0.190 

HOT US 0.004 0.014 0.037 0.072 0.116 0.167 0.226 0.274 0.324 0.378 

TGT US 0.001 0.002 0.006 0.010 0.017 0.026 0.038 0.048 0.060 0.073 

TIN US 0.003 0.012 0.026 0.049 0.077 0.107 0.142 0.176 0.214 0.254 

3339Z US 0.001 0.002 0.005 0.008 0.014 0.019 0.026 0.033 0.042 0.051 

ALL US 0.001 0.003 0.006 0.010 0.014 0.020 0.028 0.033 0.040 0.046 

CB US 0.001 0.003 0.006 0.010 0.013 0.019 0.025 0.031 0.039 0.047 

DOW US 0.001 0.004 0.008 0.013 0.022 0.033 0.046 0.061 0.078 0.098 

HIG US 0.001 0.003 0.006 0.009 0.013 0.019 0.024 0.031 0.038 0.047 

KR US 0.002 0.005 0.011 0.021 0.036 0.055 0.077 0.099 0.124 0.152 

SHW US 0.002 0.006 0.011 0.019 0.029 0.041 0.054 0.068 0.083 0.100 

DIS US 0.001 0.002 0.004 0.008 0.014 0.022 0.033 0.041 0.051 0.062 

TWX US 0.002 0.004 0.008 0.015 0.023 0.035 0.051 0.066 0.084 0.104 

TOL US 0.004 0.015 0.041 0.070 0.104 0.136 0.172 0.206 0.243 0.281 

RIG US 0.002 0.004 0.006 0.013 0.021 0.032 0.046 0.058 0.073 0.089 

TSN US 0.003 0.008 0.018 0.035 0.056 0.083 0.116 0.146 0.179 0.215 

UNP US 0.003 0.006 0.009 0.013 0.028 0.042 0.059 0.075 0.093 0.113 

UHS US 0.004 0.011 0.021 0.040 0.066 0.094 0.127 0.156 0.189 0.224 

VLO US 0.002 0.004 0.009 0.016 0.027 0.039 0.054 0.067 0.081 0.097 

VZ US 0.001 0.003 0.006 0.011 0.019 0.028 0.040 0.052 0.066 0.082 

WMT US 0.001 0.002 0.004 0.006 0.009 0.013 0.018 0.023 0.028 0.034 

WM US 0.002 0.007 0.016 0.026 0.038 0.048 0.060 0.073 0.087 0.102 

WFC US 0.001 0.003 0.005 0.008 0.011 0.015 0.019 0.024 0.030 0.036 

WY US 0.002 0.006 0.014 0.027 0.043 0.065 0.092 0.117 0.146 0.178 

WHR US 0.002 0.004 0.009 0.022 0.033 0.051 0.072 0.092 0.114 0.138 

WYE US 0.001 0.002 0.005 0.007 0.011 0.017 0.023 0.029 0.037 0.045 

XL US 0.002 0.006 0.011 0.020 0.032 0.043 0.055 0.067 0.080 0.094 
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12 Appendix C  

Discount factors 

Term 1 2 3 4 5 6 7 8 9 10 

Rates 4.63% 4.57% 4.57% 4.59% 4.60% 4.700% 4.800% 4.900% 5.000% 5.000% 

Discount 0.9557 0.9145 0.8745 0.8358 0.7986 0.7591 0.7202 0.6820 0.6446 0.6139 
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